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SECTION 1

Introduction

In recent years, electromagnetic scattering from complex structures has become an

important field of research. Accurate and efficient solutions to scattering from com-

plex structures can enhance the ability to understand how targets can be detected

in the presence of clutter. Many approaches are available, but for high frequency

scattering, the Uniform Theory of Diffraction (UTD) is one of the most efficient

and accurate techniques. UTD can provide the characteristic scattering properties

of local features of the target such as frequency response, polarization, and angular

behavior.

It is well known that due to the highly local nature of high frequency scattering,

the solution to complex structures can be modeled approximately as a superposition

of scattered fields from simpler shapes such as plates, ellipsoids, cylinders, dihedrals,

trihedrals, et cetera. These can be used to represent component parts of vehicles

such as trucks, aircraft, etc., as well as natural objects such as tree trunks and

branches.

The object of this research is to find far zone backscatter and bistatic scattered

fields from some of the most common shapes which require second and higher order

interactions to get an accurate result over a wide range of angles and frequencies.

The basic shapes important to this discussion are the dihedral, bruderhedral, tri-

hedral, top-hat, bi-cone, parallel plate cavity, cake pan (shallow circular cavity),

mm m m |1



donnt and multi-joined cylinders. All the shapes considered are assumed to he per-

fectly conducting except the multi-joined cylinders which may be made of dielectric

materials. For these shapes, the most important higher order interactions will be

determined. Where possible the expressions will be simplified to show the connec-

tion between the UTD results and the more classical PO approximations. It should

be pointed out that many of the targets do not have easily found references to their

scattering properties.

Some background information on UTD [1] is presented in Section 2. The double

diffraction formulation presented here is derived in Reference [2]. In Section 3, the

UTD analysis of a two-dimensional dihedral is discussed. Parallel ray formulation of

the UTD is used here for the far zone problem. This means, in two dimensions, that

only edge diffractions, their images, and various combinations of double diffractions

are needed. This is a very efficient and accurate means of analyzing the far zone

problem. It avoids any integrations and non physical "imposed" edged conditions.

Basic dihedral mechanisms are studied, and it is shown how the various interac-

tions ensure continuity of the total field. It is found that excellent comparisons with

Method of Moments results are obtained using fields of up to third order interactions

for dihedrals of 600 or greater. Also, it is observed that this solution is good for di-

hedrals that are as small as about one wavelength (maximum width of the dihedral).

Higher order interactions are required to get results for less than 600 dihedrals or for

smaller sizes. For the case of maximum scattering from a general angled dihedral,

the UTD terms that are dominant in between the strips of the dihedral are reduced

to simple forms.

UTD, being a ray technique, predicts infinite fields at caustics. It is therefore

iecessary to introduce caustic corrections to obtain a bounded field at the caustics.

Caustic corrections of first, second and higher order are discussed in Section 4. In

Section 5 and 6, the two-dimensional dihedral solution, modified by the spread factor

and the caustic corrections discussed in Section 4, is used to get results for the top-

2



fiat and lv;-cnne, re.pectively. Rt i. shown that the ctirvatture modifications and the

caustic corrections to the two-dimensional solution gives appropriate results when

compared with the body of revolution results even for very small sizes.

A modification to the two-dimensional dihedral is the parallel plate cavity. The

parallel plate cavity modified for curvature and caustics effects is the cake pan (shal-

low circular cavity). In Section 7, the parallel plate cavity and the cake pan are

discussed. For the cake pan, ray terms which contribute only in the principal plane

are included. It is found that for shallow and wide circular cavities good results

can be obtained, over a wide range of angles, by including only the ray terms that

contribute in the principal plane.

For the donut, in Section 8, the first and second order GO terms and its caustic

corrections are discussed. No creeping wave terms are included in this solution.

In Section 9, techniques developed for the two-dimensional dihedral solution and

the cylinder solution is also used to get backscatter results from multi-joined cylin-

ders. This model is used to investigate the scattering from geometries similar to tree

trunks and branches. In particular, two types of "tree" crook models are examined.

The UTD results are compared with the measurements and reasonable agreement is

found.

3



SECTION 2

Theoretical Background

1 Introduction

This chapter contains a brief description of the techniques of Geometrical Optics

(GO), and the Uniform Theory of Diffraction (UTD) needed for the solution of the

configurations analyzed in this work. Details on these high frequency approximate-

solution methods can be found in References 11, 3, 4, 5]. Also, a recently developed

far-zone double diffraction coefficient is presented [2].

It is assumed that the fields exhibit a time dependence of ejv' which is suppressed

throughout this work.

2 Geometrical Optics (GO)

A brief summary of geometrical optics is given here. The propagation of electromag-

netic energy at high frequencies through isotropic, lossless media can be described

using GO. Thus GO provides a high frequency approximate solution to the incident,

reflected and refracted fields. In our problem, we will be concerned with the reflected

field. The GO can be obtained from an asymptotic solution of Maxwell's equations

and it corresponds to the leading term of the Luneberg-Kline asymptotic expansion

for large values of angular frequency 11]. According to GO, electromagnetic energy

can be viewed as travelling along well-defined paths known as rays. The ray path, in

4



any continuous medium, may be determined using Fermat's principle which states

the energy will flow along the path of shortest electrical length between any two

points. The shortest electrical path is one which results in the shortest propagation

time between two points. From Fermat's principle, the law of reflection and the law

of refraction can be obtained. In geometrical optics, phase is proportional to the

distance along the ray path from some reference point, and the amplitude is gov-

erned by the conservation of power in a tube of rays. Figure 1 shows one such tube

of rays. The distances p, and p2 are from a fixed reference point to the "caustics",

where a family of rays merge or intersect.

In geometrical optics, like all other ray techniques, the fields can not be evaluated

at the caustics. At caustics, the approximation of power conservation in a tube of

rays is no longer valid. The field near a caustic appears to become infinite as a finite

amount of power gets squeezed into a vanishing area. The fields near caustics must

be found by other means. Chapter 4 discusses some of the caustics encountered in

this work.

2.1 GO Reflected Field

The GO reflected field from a smooth conducting convex surface with radius of

curvature greater than A, see Figure 2, is given as

S(r-)= '(Q,)" (P +sg)(p• + T) e (1)

where

Qr = reflection point,

E'(Q,.) = incident field at Qr,

s= distance from Qr to receiver,

R = the dyadic reflection coefficient,

R = R lAi' +

5
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P7.2= principal raeii of curvature of the reflected wavefront, and

1 1 ( + Cs6' [i(022 )2 + (012 )2 +(021 )2 + (E)1)21

P1,2 2 2 1( R, R2

+ L pI-1 )2 4cos0' [ (022)2 + (012')2 + (021,)2 + (e')2

p 4op2 O I p 1(2 )12 R, R 2

Cos 2,+i (02)2 ( ,21 )2 +± ( o , , ) 2 410 12 2 (2)
1011 R, R2  R, R2] 2

where the plus sign is associated with pr and the minus sign with p", and

ojk = A'j.0k (3)

or

0 I.&I0, &2.0 " (4)

X and ±' are the principal directions of the incident wavefront on the curved

surface S at Q, with the principal radii of curvature p, and p2, and 0' is the angle

of incidence. (See Figure 3) U, and U2 are unit vectors in the principal directions of

S at Qr with the principal radii of curvature R1 and R2.

For the far-zone case, the Equation (2) can be simplified as

1 1 [sin 2 02 sin 2 01]
P.2 = coS 6i R, R 2- -

• 1 [sin2 62, sin 2 O, I 42
C+ 5 , [ý R, R2, RR2 (5)

where 01 is the angle between the direction of the incident ray .' and 01, and 02 is

the angle between S' and 0 2.

3 Uniform Theory of Diffraction (UTD)

Keller's generalization of fermat's principle allows one to include a class of rays

diffracted from electrical and/or geometrical discontinuities on a scattering or a
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radiating object; these diffracted rays exist in addition to the rays of GO which

describe incident, reflected and refracted rays.

In GTD, the initial value of the diffracted rays are obtained by multiplying the

incident field with a diffraction coefficient at the point of diffraction, analogous to the

reflection coefficient for the reflected ray. The expression for the diffraction coefficient

depends on the scattering mechanism (edge diffraction, tip diffraction, etc.). The

application of GTD is limited only by the availability of accurate coefficients. The

Uniform Theory of Diffraction (UTD) is an improved version of the GTD in that

the diffraction coefficients remain valid at and near the shadow boundaries, where

the Keller's original coefficient had failed.

Two major contributors to the diffracted field considered by UTD are diffrac-

tion from the edge and the diffraction from a curved surface (or the creeping wave

diffraction). In this work, only the edge diffraction will be considered.

4 UTD Edge Diffracted Field

The singly edge diffracted UTD field as developed by Kouyoumjian and Pathak [1]

is now introduced. The three-dimensional wedge diffraction geometry is shown in

Figure 4. Let an arbitrarily polarized field -i'(s') which may be plane, cylindrical or

spherical wave be incident on the wedge. Such a field 7E'(s') can be represented as

a GO incident ray field. When an incident ray strikes the edge at Q, (say), then it

generates a cone of edge diffracted rays which emanate from Q, so that the cone half

angle = angle made be the incident ray into the edge tangent at Q, (i.e., #/o = 16).

This is a consequence of the generalization of the fermat's principle to the incident

edge diffracted.

The authors of [1] expressed the dyadic diffraction coefficients in a ray fixed

coordinate system which is centered at the diffraction point Qc. The orthogonal

unit vectors associated with the ray fixed coordinate system are defined as:

= X (6)

10
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Figure 4: Geometry for the three-dimensional wedge diffraction problem.
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and

i =k X. (7)

These vectors are shown in Figure 4. The diffracted field from a semi-infinite

perfectly-conducting curved wedge is given by the following expression:

8 (pd -a)P'(S)~•Q) • 8, ) e , (8)

where

Q, = point of diffraction on the edge,

E' (Q,)= incident field at Q,,

a = distance from Q, to receiver,

pd = caustic distance for the diffracted ray,

S= the dyadic edge diffraction coefficient,

D=- o •6'qsDh, (9)

or in matrix form

0(10)E:d 0 -Dh E++, . (P4 + s

The ray fixed coordinate system ensures that the diffraction coefficient dyadic, D,

matrix is diagonal.

The soft diffraction coefficient, D.,, is associated with the component of E-field

that is parallel to the edge, i.e.,

0= . (11)

The hard diffraction coefficient, Dh, is associated with the component of E-field that

is perpendicular to the edge, i.e.,

ii V (i.) =0. (12)

12



The soft and hard diffraction coefficients are defined as

Da= -ejw cot )r+f-F (kLa+O)
D,, /2- 2n sin •[ ( 2n )

+ cot (W -,f ) F (kLai13-))

(cot (+ #+) F (kLa+(13+))

+ cot ( #+~ F (kLa-(13+))] (13)

where

(e 2 cos' 2nrN; -(,)) (14)

and N' are integers which most nearly satisfy the equations

27rnN+ - (/B) =7, (15)

and

27rnN- - (/6) -7r, (16)

with

S=j3+ = ±qS-•' (17)

F(x), where x=kLa, is a transition function defined as

F(x) = 2j I I f rI e-jr2 dr (18)

The magnitude and phase of F(x) is shown in the Figure 5. For x small (X < 0.3),

F(m) '-' (Vr/r- 2 -2 2
2-)e(+4). (19)

When 0.3 < x < 3.5, linear interpolation is used as an efficient numerical means of

determining F(x) so that

F(z) = F(zx) + A.(x - x,,). (20)
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Figure 5: Magnitude and phase of F(x).

For z > 5.5 one finds that

F 3 .15 75F~), z 4a9 Jx~ 16x--' (21)

The diffracted caustic distance, pd, is defined as

I d f p2. (22)
p - p:. a, sin2 / 8

L is a distance parameter, where

V', = ..P:r + J) A,," 2,
-P(7 ) PT . sin 2 / ,, (23)
L :r, (P.r + ) (p.r + (3

The parameters p.' are the (incident, reflected) radii of curvature at Q, in the plane

containing the (incident, reflected) ray and i is the unit vector tangent to the edge at

Q•, ii is the associated unit normal vector to the edge directed away from the center

of curvature, a, > 0 is the radius of curvature of the edge at Qc and 63,, is the angle

between the incident ray and the tangent to the edge as shown in Figure 4. The
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unit vectors V' and A• are in the direction of incidence and diffraction, respectively.

p,2 are the principal radii of curvature of the (incident, reflected) wavefront at Q,.
The supersc'ipt n, o on L denote tha'. the radii of curvature are determined at the

reflection shadow boundaries of the n and o faces, respectively. The reflected field

caustic distance in the plane of the reflected ray and edge tangent is given by

1 1 _2(,•.i•)(A'.i&) (
~ p. a~s~ 2P0 (24)pC - . a, sinft '.

where

n= normal to the surface at Q,

fi= normal to the edge curvature at Q,

= incident ray direction,

a,. radius of the edge curvature.

The diffraction coefficient in Equation (13) may be simplified for the special case

when the source aad the receiver are in the far field so that F[x] is approximately

equal to 1. For this case the diffraction coefficients, D.,.h reduce to the Keller's

diffraction coefficients in Reference [3], or

Dj, ,(L, cot + + cot 2n
2 n V2-7 sin A~, I ( 2n ( 2

T=cot (2n) + cot (W P+ , (25)

which may also be written as

-e-j sin -
Dh,(L, •,.) -e in

n V2'7rsin fl30

[ 1 1 (26)

The diffraction coefficient may also be simplified for the special case when n=2

(half-plane)

-e -• [F[ La(1-)] F[kL1,(#+)]
DR,,h(L, 0 ', 0,/3,) = -- k -~f) F- k (/3 (27)

20vTksin/.% [I Cos(6/2) Cos(#/,/2) "
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5 Scattering from a Strip in the Far-zone

A study of the scattering from a strip is considered because the strip is the basic

building block for the structures discussed in this work. For the case of far-zone illu-

mination and observer, the first order bistatic scattered field from the strip contains

only the diffracted field from two edges. The GO information need not be specifi-

cally included, since it is contained in the GTD far zone diffracted fields. Consider

the geometry shown in Figure 6. The length of the strip is given as 1. The basic

geometrical parameters needed are

40,-4"' =- - ' (28)

. -+- 0/, 0 + -- -- 2. (29)

02 r - ,O <q,<-- ', (30)

37r +7,r + 40,, < <27r

02 7r + 0,, < ,0 < 7<r +0,, (1
37r + 0. - 7, r + 4,k, < 0 < 27r

U,,,= U',, [D..,,h(Q,) + D,,h(Q 2 )] e-jk (32)

where

Ue E,, E parallel to wedge (33)
= H,, ,E perpendicular to wedge

and

U! i h2e~ +cs o
((12 ) 2 2ý"

It is observed that both diffraction coefficients become infinite at the reflection

shadow boundaries (i.e. 01 + 0' = 7r and 02 + 0' = 7r; or 4 + 0' = 20,, + ,r) and at

the incident shadow boundary (forward scatter) (i.e. O, - ,O' =- 7r and 02 - 0!2 = ,r).

16
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Using Equations (28) through (31) into Equation (34) and constraining to the

region 0 < 0 < 7r + 4. and 0 < 7r + q,,, gives

h h '2-7-k cos cs(+€24'

( 1- w114) (35)
h 2v/-wk cos (2-) cos (2.24-")

Notice that for this range the scattering along the incident shadow boundary is not

possible. Combining terms results

U!= LT - e jk ' (2 ) 29±

J 2j sin (kl cos ( 26d ) Cos (62)))

1Cos(0022y
2cos (1cos (+4412,) Cos ( )) 4

+± (36)
cos ( ') "

In general, the case of infinity along the reflection shadow is more common and

is treated in detail to show how a continuous result is obtained. Near the reflection

shadow boundary

Cos ( + 0'- 2.) =cos(/2±) T. (37)

Using Equation (37) in Equation (36) gives

-V72= U'- <+jklcos +0 o0)- (38)

For broadside backscatter case

U[ = U"- [±jkl + 1] = Ur' + Ur (39)
Sh h V2-7 h

where U., is the PO term and Uc is the correction to PO. Simplifying the U,' term
A .A h

Ur u = U--u kl (40)

h T/27r k

18



= 2w = 2- (41)

gives the expected PO result for backscatter from broadside of a 2-D strip.

Results of fields backscattered from a strip are presented in Figures 7 and 8. The

UTD solution is obtained by the above formulation. Comparing the UTD result

with the moment method result, it is observed that using the single edge diffracted

fields from the edges gives a good approximation to the exact solution for the main

and a few side lobes. For the TE2 case, we note that near q6 = 0' and 180" the first

order UTD solution is not accurate. This is a consequence of the higher order terms

not being taken into account. However fo" the TMZ case the higher order terms are

negligible. See References (6, 7, 8, 9] for higher order effects on the strip.

6 Double Diffraction Formulation

Previous solutions of the field diffracted by double-edge structures used the UTD

in its original formulation argumented by slope diffraction (especially for the soft

polarization) to give useful results when the distance between the two edges is very

large. However, difficulties are present whenever the second edge is located in the

transition region of the first edge and the diffracted field is calculated in the transition

regions adjacent to the incident or reflection shadow boundaries of the second edge.

These problems are caused by the rapid, spatial variation together with a non-ray

optical behavior of the field incident on the second edge after diffraction from the

first. It is obvious that the angular range of the overlapping transition regions

broadens as the distance betwevi, ';e edges decreases. Part of the difficulties are

removed by a spectral extension of the UTD in References (6] and (7]. This solution

is uniformly valid at any incidence aspect, but it is restricted to those observation

aspects which coincide with diffraction shadow boundary (DSB) or the diffraction

reflection shadow boundary (DRSB). (See Figure 25.)
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A closed form solution for the doubly diffracted field in the iar zone from a pair of

parallel wedges is presented in Reference [2]. As shown in Section 3, these expressions

exhibit the proper discontinuities and singularities so that when combined with the

singly diffracted field, the field is continuous and uniform. For joined wedges, shown

in Figure 9, the angle parameters are defined as

4,, = •r + (-1)"(nIir - O'); p = 1,2, (42)

and

€I~q = 7r + (-1)1(n27r - 0'•); q = 1, 2. (43)

The pattern function of the field doubly diffracted from Q, and Q2 is given as

2 2

P' (Q1,Q2) Z P' ($'P,'q). (44)
pMl qh

By only retaining the first nonvanishing term in the asymptotic expansion for kd

large, the following closed form expressions are obtained

P,(* , q)"•(- 1)",(- 1)q ap,,a
P " ( It IN ) 87rj(n in 2 )2 sin 2( $• -) sin 2( _2.2)

F[kda,,] - F[kdaq] I e-JAed

a. a. (45)
for a TM plane wave (with the electric field parallel). For a TE plane wave ( with

the electric field perpendicular),

A~~ ~ /4'1q, - I co , ') cot1
47rjnn 2 cot c 2n2

aqF[kda,]a - apF[kdaO] (e -jk , (46)
ap -aq v'f) (46

and

a, = 2cos2I(,t- r-- (-1)'2nrN,)/2] (47)

where n = n, for i = p, n = n 2 for i = q, and N, is the integer that most nearly

satisfies

N, = ( 4i)' 2-!-. (48)

2n2r
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F(x) is the transition function that has been defined for the single diffraction case.

If the two wedges are separate, the above equations are slightly varied. For the

separated wedges shown in Figure 10, the angle parameters are defined as

7, + (-1)"(0, - ipO); p = 1,4 , (49)

Wq 7r + (-1)'(02 - i/q5bJ; q = 1,4, (50)

with 9j = 1 for i=l, 2 and ih- = -1 for i=3, 4. The pattern function of the field

double diffracted from Q1 and Q2 is given as

Pe (Q,1, Q2•) . _ XPq [P, (q,,,, 4Iý9) + Ph (4'p, 't)] (51)

P=1 q1 2

where Xi = 7ii in the TM case and Xi = 1 in the TE case.

7 Limit Forms of Double Diffraction Coefficients

When a, and aq are such that they are approximately equal but not close to zero,

Equations (45) and (46) tend to become of indeterminate form. This can cause

numerical problems on the computer. Equations (52) and (53) are parts of Equa-

tions (45) and (46), respectively, that may have such a behavior. To get around this

problem on the computer, limit forms are used in the approximate region. Defining

Tf Ffkda,,] - Ffkdaq] (52)

ap - aq

and
Th = aqF[kdap] - apF[kda], (53)

ap - a.q

and noting that

F[kdaq + EJ - F[kdaq]
kda ± - da = kdF'Ikdal I ~ ~ (54)

fdh1m kdaq + E - kdaq

where the I denotes diffraction with respect to the argument of the transition func-

tion,

-- f f (x)dx f -(p), (55)
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Figure 9: Joined wedges geometry.
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and

F[xI = 2jv/-ejJ e2-T''dr, (56)

equations for T. and Tj,, that are valid when a1, approaches aq may be derived. From

Equations (54) to (56) one obtains,

dF+ 2j[) (0 -r dTJ (57)d- =-j1- 7x=/ 24-) -•

dF 1dF, - [2jx -(1 + 2jx) F(x)], (58)

and as ap --4 aq, from Equation (52)

im T, = 1( + jkd) F[kda,] - jkd]. (59)

Equation (53) may be rearranged as

Th = aa UP (60)
a., - aq

and

lim Th= (kd)2apap d[Ki-!]. (61)

Using Equation (58) in Equation (61)

T= [(j F[z] - j] (62)limu TY=ka k-d-ap

Thus, when a, and aq are almost equal but not close to zero, Equations (59) and

(62) may be replaced by Equations (45) and (46) for T, and Th to insure correct

results and prevent computer errors.
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SECTION 3

UTD 2-D Analysis of a Dihedral

1 Introduction

The dihedral has been in use as a scattering device for many years. Some studies

conducted on the dihedral at The Ohio State University ElectroScience Laboratory

are given in References [10, 11, 12, 13]. They entail mostly measurement studies

with some basic analyses. More recently, renewed interest in the dihedral has led

to more detailed analytic studies. A Physical Optics for a right angled dihedral is

analyzed with full polarization scattering matrix in Reference [14]. Physical Optics

and the Physical Theory of Diffraction are used to predict the results for dihedrals

in Reference [15]. In Reference [16], a near zone type UTD plus an "imposed" edge

diffraction extension is used to get the backscatter results for the dihedral in the "far

zone" by extending the distance parameter for the near zone case. The use of UTD

to study plate interactions in the far zone is conducted in Reference (17]. This type

of solution is improved and extended to specific dihedral problems in Reference [13],

and also briefly discussed in this report as a foundation for the other scatter objects

analyzed in this work.

As seen in the previous section, the field of a strip can be obtained by including

the diffracted fields from the two edges, and the infinity from edge diffractions com-

bines to give a bounded result in the specular direction. When more than one strip

is used in a model, the singly diffracted field from the edges will act as a near-field
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somrce which can create reflected and diffracted fields from the other strip. Thus,

interactions between the strips are necessary to provide a more accurate pattern. In

general, these interactions are present only over a limited region which may be deter-

mined geometrically. These higher order interactions also provide the cancellation

of infinities to provide a bounded result. It will be shown that interactions up to

third order are sufficient to obtain results with engineering accuracy for the case of

two-dimensional dihedrals of 600 or greater and for sizes larger than one wavelength

in total length.

The UTD interactions that have been included in the analysis which are contained

in the 2-D computer code are shown in Figure 11. The single interaction fields in-

cluded are simply edge diffraction (D) terms. The second order interaction fields are

the reflected - diffracted (RD), diffracted - reflected (DR), and diffracted - diffracted

(DD) (double diffracted) terms. The third order interaction fields are the reflected

- reflected - diffracted (RRD), diffracted - reflected - reflected (DRR), reflected -

diffracted - reflected (RDR), reflected -diffracted - diffracted (RDD), diffracted -

diffracted - reflected (DDR), and diffracted - reflected - diffracted (DRD) terms.

Triple diffractions have not been included. Any of these terms could be critical es-

pecially at a shadow boundary. As a general rule, by knowing the position of the

source and the receiver, and by drawing ray diagrams, it is simple to predict the

important terms by observing the directions of the bounces.

The solution discussed here is based on a study of strip interactions given in

Reference [17] and a study of double diffraction in Reference (2]. The strip interaction

in the previous study, however, did not provide the necessary accuracy for dihedral

configurations. The two dimensional geometry studied is shown in Figure 12. The

characteristic features of our analysis allows that : (i) the length of each strip may

be different, (ii) the angle between the strips may be varied, (iii) back and bistatic

scattering may be treated, (iv) linear and elliptical polarization can be handled, (v)

the solution is valid for small sizes in terms of a wavelength.
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(4) DD (5) RRD (6) DRR

(7) RDR (8) RDD (9) DDR

(10) DRD

Figure 11: The interactions considered.
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Figure 12: Two-dimensional view of the geometry studied.
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2 Basic Dihedral UTD Mechanisms

This section discusses the basic UTD terms that provide the characteristic dihedral

pattern. In the case of the main beam of the pattern, the RD and the DR UTD

terms along with the single diffracted (D) term from the wedge formed at the junction

between the two intersecting strips provide the necessary fields. The specular from

the individual strip faces is produced by single diffraction (D) from the ends of the

strips and the DR, RD and DRD terms between the strips. The double diffraction

(DD) across the face of the dihedral can also be important.

As mentioned above, the RD and DR terms along with the D term from the

junction provide the starting point for determining the scattering from an arbitrar-

ily angled dihedral. These terms, in general, look quite complicated. In some special

cases, they can be reduced to simpler formulas. As expected, in the case of backscat-

ter for a wedge angle of a = 900, the well known PO result for a dihedral can be

derived.

From the equations in Section 2 and for angles derived from Figure 13 for bistatic

scattering from a general angled dihedral, the diffracted term from the junction is

U,, = U'h- •-e-jr/' 7ct(r + (0b - eb') + 7~t(r - (0- - 0b'))2

a~2 V n 1-rkfcot k 2 n ) +cotK( 2n

+R', [cot (r + (0 + +c')) +cot(-(0+'))]}" (63)

In Figure 13, D, R and RD, terms are due to reflection from strip 2. The terms

D2R and RD 2 are due to reflection from strip 1. The basic geometrical parameters

for the D, R term are

7r ; 7r --2a-4 (64)

1,+ 27r - 2a + -' 0!(65)

0- -2a + + '.(66)
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Figure 13: The DR and the RD terms (only DIR and RD, shown).
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For the RD, term, the angles are the same as for DIR with q5 and 4,' interchanged.

The term RD2 has the following parameters

7•- (a + 0') ; 02 =7r +0 (67)

2 + 02= 21- 2a+, - 0' (68)

02 - 02 = + 0%, (69)

and for the D2R term, the angles are the same as for RD 2 with 4, and 0,' interchanged.

The RD and DR fields are given by

ul), H Ur?0je-j'/4
U + U T-,h 2

ad+ (1-, cos (2)) J cos-##'2. (70)

U ')''- " U-?'1
Co o,(R-±) - Cos R5 cos -0 A-h)e2

) 2iIc~(3L

+ (Cos ~ ' -R81h Co 0-' 2,t) e 2 o~t C 40 (70)±i

-2 [2 snc)-l i(a

and

URn2 +{ Ui)2n __uihRs,.h-eJ

+j1cw(+1 ),,, R,_(# ,#(1.

r~ ~ 12 snc-l in2c•
Cos Co < (0 rcan1'2qo~ ,cs J(2

2 [ sn -1 n( 4,' < arctan k12 cos( 11) I cos(2)' " (73)
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D21? is present in the region

arctan 12 --b )_ < < i a -], (74)

and RD 2 is present in the region

arctan 12 sin(- )] < <IT-a. (75)

The case where a is 900 is considered first. It is well known that the diffracted

field from the axis of the dihedral will be zero for this case. Using

Cos - = :: sin (76)

in Equation (70), the following is obtained

U ), n + U ntO = e,

{ c~s[2k/t sin ( +"2'ý)sin ( -1)]{2R5.,,, COS sn 2 J -"'2
sin (1+0')

sin [2cl, sin ( sin----') sin}(
-2j- (77)

With a small bistatic angle and k1l large, the second term is dominant. Thus, the

above expression may be written as

.+ .. , he1) U p " sin (b ± f sin [2k I, sin ( ) sin . (78)

2 2k11 sin (.0+'Ž) (i Y
For the backscatter case, with strips of equal length, from Equations (72) to (75),

only D, R and RD, are present for the range 0 < q5 < 7r/4. Also, only D2R and RD 2

are present for the range r/4 < 4 < 7r/2. For the backscatter case

minant =j U t, ejwr/. 21
d t sin(O); 0 < 4 < ir/4, (79)

and
Udlnt=+ U,2e1"/-2f'21 cc's(S); 7r/4 < 4 < w/2. (80)
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Notice that for • = 450 this result agrees with the well known PO result. Figi re 14

shows an excellent agreement of the result obtained by Equations (79) and (80) with

that obtained by the UTD computer code (with all terms mentioned above).

Note that in Figure 14 there is a slope discontinuity in the dominant UTD (RD

SUTD (Domlanut)

9 ~20 50 4 06 08

0i (deg.)
Figure 14: The dominant TJTD terms and the computer code results for backscatter
for 9 in 900 two-dimensional dihedral at 10 GHz.

and DR terms) at =450. The DD field across the face of the dihedral balances this

slope discontinuity. For the vertical and horizontal polarizations, Figures 15 and 16,

respectively, compare the UTD with and without the DD field across the face of the

dihedral and the Method of Moments solution [18, 19] for the backscatter case with

0 = 45. To illustrate this point further, consider the 4 bistatic case. Figure 17

shows the DR and RD terms for a 40 bistatic angle. Note that the slope discontinuity

of the backscatter case now spreads out and makes the pattern discontinuous. This

is due to different boundaries of the various RD and DR terms (Equations (72) to

(75)). Figure 18 shows that this discontinuity may be corrected by including the

DD term (see Section 4) across the face of the dihedral.
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Figure 15: Contribution of the DD across the face of the dihedral for the backscatter
case at 450 incident for the vertical polarization.
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Figure 16: Contribution of the DD across the face of the dihedral for the backscatter
case at 450 incident for the horizontal polarization.
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-- IU)* .B DO

0 (deg.)
Figure 18: DD term used to eliminate the discontinuity.
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Now considCr the case when a is not close to 9010. It is expected fhat the maximum

scattering will occur when 0 - 4/ - 2a 7-r or -- 4/ + 2a = 7r. In this case, either

the DR or RD is a major contributing factor along with the diffraction from the joint

of the dihedral. Notice that the first condition is satisfied if 0 > qV and a > 900, or

q5 < 4V and a < 900 (DI R or RD 2 term is the major contributing factor and only

one term is present in a given region). The second condition is satisfied if 0 > 0' and

a < 900, or 4b < 0' and ca > 900 (RD1 or D2R term is the major contributing factor

and only one term is present in a given region). Hence, it may be assumed that this

is a region where diffraction from strip 1 and reflection from strip 2 is present. It is

also observed that when the D, R term is large, the first cotangent term of the singly

diffracted term (Equation (63)) is also large. On the other hand, when the RD, term

is large, the second cotangent term of the singly diffracted term (Equation (63)) is

large too. For c small, the case when

c-€ -,r + c, (81)

cos 2 (82)

and

is considered. First, the contribution from D1 R and the first cotangent term of the

single diffraction may be simplified to

e+ (84)

U;= :,. , cos (.+ . e- 2a) (85)

Using Equation (81) in (85) gives

f = -sin (s ). (86)
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Next, the contribution of RD, and the second cotangent term of fhe single diffrac-

tion are obtained as

Udlf), + }. ot- -i/

Uonn .h 2l t-

e 2 2 L

s(2a) + - cot 2 (87)

At this stage, to simplify Equation (87) further, it is necessary to assume that Ck is

close to 900. Consider 6 to be a small angle such that

= :r/2 + 6. (88)

Now Equation (87) may be written as

N II in rl I i~ "r14 e-2jkll 2'

1
J domflnlflu -

11Cs(40+ 0' - 2a) { sin [28k11 cos ( 2)] (89)
2 26k1, cos

Again using Equation (81) in (89) gives

U ,i , fr/4,2ikl- I si (O')

1 s sin 12Sk/, sin (0')] (90)
Ssin (Ab) 2Sk!, sin (0') "

Had the RD, term been large, the result would have been the same as Equations (85)

and (89). However using the condition for maximum scattering for this case (4'-

4' + 2G = 7r), Equation (85) becomes

U(,m.;l, ' - ..h1 esin (2a - ') (91)

and (89) becomes

BM) j~r I U'k IW A sirv(2(i -0')

Issin [s 26 A sin (2a - ( 12)
sin (2Q -- $') 2SkI, sin (2ca - 4/) j (,.2)
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In the region where RD2 is large, the following equation would hold

,,,,i ,,, .f _ 12 sin (95'+ a) (93)

and

1U2R~+D2a.d,.# U- e j/ 4 e-2jk2l#i,,(4,'+,,)
2on2kinan1 - s (',h e

1 sin (0! + a) si [2kl2 sin (0'a). (94)28ki2 sin (0' + az)

On the other hand, in the region where D2R is large

U;)R_)., 12

+ U•.e, - sin (0' - a) (95)

and

RD02 +D02 .4,,, .._ / 2jk-( -
Uminnnl eh e

12 ia sin [26k12 sin (40' - a)] (- sin (•b' - a) .61sn( " (96)
26k12 sin (•-a)

It is important to emphasize that Equations (84) to (96) are present over regions

as given by Equations (72) to (75) and are valid for one of the two cases of max-

imum scattering as mentioned earlier. Figures 19, 20 and 21 are for equal length

strip dihedrals of a = 920 (40 bistatic), 950 (100 bistatic) and 1100 (400 bistatic), re-

spectively, and compare the results obtained by the dominant UTD terms with that

obtained by the UTD computer code. Good agreements are obtained in all regions

except where the speculars from the strips are present, which are not included in

the dominant UTD terms.

3 Specular Return From Dihedral Strips

As pointed out earlier, the specular from the individual strip faces is produced by

D from the ends of the strips and the DR and DRD terms between the strips.

The importance of D and the DR terms is illustrated by the following. Consider

the geometry shown in Figure 22. It is observed that the singly diffracted field
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Figure 19: The dominant UTD terms and the UTD computer code results for 9 in

920 2-D dihedral at 10 GHz (40 bistatic).
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Figure 20: The dominant UTD and the UTD computer code results for 9 in 950 2-D

dihedral at 10 GHz (10' bistatic).
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Figure 21: The dominant UTD terms and the UTD computer code results for 9 in

1100 2-D dihedral at 10 GHz (400 bistatic).
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20

022

Figure 22: Cancellation of infinities of diffracted and diffracted-reflected terms.

D, appears to leave an infinity at the reflection shadow boundary. The diffracted

- reflected field D2R also appears to leave an infinity along the incident shadow

boundary. However D, and D2R combine to give a bounded result.

The diffracted field is

U"' UaAD.,h(QeI)i, (97)

where Jih E parallel to wedge (98)SH', E perpendicular to wedge

and

D..h(Qj -e~'' (j;( 7 1+ R8.hc( )) (99)

where the reflection coefficient, R.,h = Ti. Along the reflection shadow boundary,

Cos 0101 =COSer/2 - e/2) = e/2. (100)
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For the DR field,

where

D,,h(Q, 2 ) - -1 + . (102)

Along the incident shadow boundary,

Cos (02 - cos(r/2 + E/2) = -c/2. (103)

By adding the singular terms of D, and D2R, the following is obtained

-.e- (" e-'q + U.hR.,,h e ( jkp" (104)

where the phase contributions (see Figure 23) are

e-Ckp = -jke (105)

and
e e- e- (106)

Equation (104) can be written as

Uqan#Jl,,t, ., _ __-______e-jk~d+l,,,.s(•,)+ ;;T• ,,,,(•,)+ 4l,1 i,,•)

As C approaches zero, Equation (107) becomes

um ingqular lo at al-- r e '/ -)k d+1(-,%(6 ) ]

nt _ . -jkdlc. { klsin(dO)} . (108)

Note that this gives the PO result for a strip of length 1.

It is observed that for the backscatter case from a 900 dihedral, the DR term is

shadowed due to the diffraction reflection shadow boundary (0 = 90"). As pointed

out in the next section, it is the DRD term that takes care of this discontinuity.

Figure 24 shows that the inclusion of DRD term ensures the continuity and gives

the correct result. Note that at 0 = 900 only the 9 in strip is visible, which by PO

gives a result of 10.39 dBm. The result obtiined by Figure 21 is 10.26 dBm.
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Figure 23: Phase of D, and DR terms.
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Figure 24: Importance of DRD term. Tile results are for a 9 in 90' 2-D dihedral at
10 GHz.
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4 Continuity of Fields by Including Double Diffrac-
tion

Figure 25 shows the shadow boundaries that can result after the first diffraction.

The diffracted field is discontinuous across the diffraction incident shadow boundary

(DSB), and the diffracted -reflected field is discontinuous across the diffraction reflec-

tion shadow boundary (DRSB). The D, D2 field compensates for the discontinuity of

DA and D, R fields. The double diffraction formulation, for separate wedges, as given

by Equation (51), has 16 terms. Across the DSB or DRSB one of the terms becomes

infinite. This term is determined by the values of 1P and 1q (Equations (49) and

(50)) which make the cotangent (cot (± "-an cot _ unbounded. Thus, any

term can become singular depending on the geometry and the position of the source

and the receiver. As shown in an example below, the same holds true if the wedges

are joined.

Consider the case when the two wedges are not joined, as shown in Figure 26.

Since 7r - (01 - 0') = 0, cot(0) = oo, and Vr + (02 + 0'2) = 4•r, cot(wr) = oc, at the

boundaries, thus the term P(4?,,=W, &q=4) will balance the singularity of the singly

diffracted field. The terms P( 4t,=1,)q=) + P($p= ,4 q=2) + P($jt,= ,q) balance

the discontinuity that results from the diffraction by the edge Q2 being shadowed

by edge Q1. The terms P(4,I= 2 , tq=4) + P(4t=:g, 4 q=4) + P( 4kp=, tq=i) balance the

discontinuity that results from the diffraction by edge Q, being shadowed by edge

Q2.

In the above sections, the doubly diffracted field was necessary to get the con-

tinuity of the fields in two cases. (See Figures 24 and 18.) In both of these cases

the discontinuity is a result of being on the DRSB. In this section, a case where the

discontinuity is along the DSB is considered. It is shown mathematically, as well

as by plots, how the inclusion of doubly diffracted field compensates for the singu-

larities and discontinuities. In Figure 27, El !- 0 and C2 L- 0 i.e., both incidence

and observation aspects are close to grazing. Note that for E, < 0 and E2 > 0,
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Figure 25: Illustration of diffraction incident (DSB) and diffraction-reflection shadow
boundary (DRSB).
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Figure 26: Balancing of .iehls for disjoined wedges.
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Figure 27: Balancing of fields for joined wedges.
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diffraction from D,,D., and fl, is present BIut. for f, < 0 and c2 < 0, only

diffraction from D2 and D~1 is observed. Details of the equations below are given in

Appendix A. The contribution of the fields singly diffracted by Qj can be expressed

as a singular contribution given by

P-"/. eQ1 2 12 e-JkI J1 + sgn(e2 )] (109)

and a non-singular contribution of

pfl(Q)~~~ -e 7r/I[o(2rE-

I 2t +w ++)1 _ - E

T cot 2 2 e- 1[+ syf(E 2). (110)

Similarly, separating P,,,,(Q2) into a singular and a non-singular part, where the

singular part is given as

P-.(Q 2 ) 2 1 ] e"Jkd11 - sgn(e,)] (111)

and the non-singular part is

--/'[cot (2w - E+2

e (27r - e2- +EP' (Q)ot:co

Tcot 27'-C - C e -'k [1- sgn(,Ei)]. (112)

For the single diffracted field from Q:j, the singular term is given as

= ,[n (Q3) = e-kh2rr2) -1 e e' . (113)

The double diffraction term obtained by setting p = 1 and q 1 in Equation (44)

compensates for the discontinuity and singularities of the single diffracted fields. This

term is given as

_e-(p qlu { I 2sgn(c 2 ) c- ,sgn(EI)
PR =It7 e12- e- _jkdi

SI ± I _-)Ad (114)

2 r
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Adding all the singular terms of singly diffracted fields from Q,, Q2 and Q:,, and

doubly diffracted field from Q, and Q2, Equations (109), (111), (113) and (114), the

following is obtained

P.,9,t' e-w/I f 1 eikI('-') 1 1 1 d

.V--- k f I - ( 5, - E 2 (115)

Now for el and E2 zero, the above equation becomes
, .. laot __ =_ 1 -± 1 Vde- ld (116)

Note that the first term is equivalent to a PO result of the strip of length h.

The second term is the correction to the PO. Figure 28 shows that the inclusion

of the diffracted-diffracted term ensures continuity. Thus, the UTD formulation of

the double diffraction presented in 121 provides the compensation of the singulari-

ties, so that the leading term of the total scattered far field is well behaved in the

neighborhood of the shadow boundary (DSB) of the diffracted incident field.

Now, consider the continuity of the non-singular part of the diffracted terms. It

is also noted that P,".,,,(Q,) vanishes due to shadowing by the edge Q2 (C2 < 0),

and similarly, P..,..,(Q 2) vanishes due to shadowing by the edge Q, (e, > 0).

From the discussion in the beginning of this section, it is expected that the term

Ph('p=27,40q=1 = f 2 ) ensures continuity of P,',.(Q,). From Equation (110), when

C2 -- 0,
of _ W/ Icot +g{1+sgn(E2)}ekd (117)

and from Equation (42) and (43),

4p=2 = 7r + (nI - (nIr - 71' - f,) 27r + c,(118)

r= - (n27r - (n 2 7r - 7r - E2)) = (119)

N=2- 27r+ 1 for 0.67<n<2 (120)
2n7r

ap= 2 = 2cos 2 [(27r + E1)/2 - 7r/2 - 2ni-/2] 2 sin 2 Ir(1 -- n) + ,,/2] (121)
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Figure 28: Importance of the doubly diffracted term for the field to be continuous
for TE case.
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for n=3/2

-1 cot (2w+c• (2n 2\
=4wjnin 2  2n,/\E 2 /{f2/2 - 2V27rkdE2/4e'I e-jkd (122)2(22

2 - 2/2 kJ d
again neglecting terms of order f2 and C2,

_ -- j_14 -jkd (2w + 2 , -j
Ph = e cot 2 sgn(E2 )e-kd. (123)

Thus P;,, + PI, (Equations (117) and (123)) is continuous across the shadow bound-

ary. Similarly it may be shown that the term Ph('=l , 4=2) ensures continuity of

However, for a TM plane wave illumination, P,'(Q,) and P"(Q2) vanishes rapidly

at el = C2 = 0, so that no discontinuity occurs due to the shadowing by Q, and Q2.

However, the terms P.(I,=2 , 4N=) and P,(,= 1 , t=) provide a contribution which,

as expected, is continuous across the DSB and provides a smoother transition from

the lit into the shadow region of the field for rays singly diffracted from edges.

From Equation (45),

I 2c,,/4 eji (124)
*P"='2,'Vq:) - 8rj(nn 2)'-' sin2 (21_+_I ) ( 2 2 k 1 --

- 1 ( i1 )\ -#

S(125)
8wjnl 9in2 2a) kVrd(15

Figure 29 shows how the result is affected by including the DD field for the case

when the TM plane wave is incident.

5 More Multiple Plate UTD Terms

The previous sections discussed the plate interaction terms that provide the ba-

sic dihedral characteristic pattern. This section briefly outlines other higher order

mechanisms that contribute to the pattern. Depending on the angle of the dilieral
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Figure 29: For the TM case, the doubly diffracted field provides a smoother transi-

tion.
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and on the histatic angle any one of theqe terms can he important. In general, as

the frequency decreases, that is, as the size of the object in wavelengths gets smaller,

more higher order terms need to be added.

The various UTD terms can be derived by using combinations of the theory in

Section 2. The importance of single diffraction (D), DR and RD terms in giving

rise to the main beam of the pattern, and the single diffracted, DR and the DRD

terms in giving the specular from the strips has already been considered. The RRD

and the DRR terms are present when the angle of the dihedral is less than 900. Of

course, these two terms are most significant when the diffraction is along a reflection

shadow boundary RSB. Although the RDR term is present for all angles of the

dihedral, its significance is greatest when the angle of the dihedral is less than 900

and the diffraction is along a reflection shadow boundary.

A discontinuity will result if a reflection falls off the edge for which a diffraction

must be included to balance the fields. Therefore, the DDR term compensates for

the discontinuity of the DRR and RDR terms. The RDD term compensates for

the discontinuity of the RRD and RDR terms. Also the DRD compensates for the

discontinuity of the RRD and DRR terms. Discontinuities of the DDR, DRD, and

RDD are balanced by the triply diffracted fields. Thus, one term may be balanced

by a number of different terms and vice versa depending on the geometry.

6 Results of Rectangular Dihedral

In this section, the theory and computer code are validated by comparing the UTD

results to the results based on a 2-D method of moments [18, 19] solution of the

rigorous integral equation for the currents induced on the target by the illumination.

Unless explicitly shown in the pattern, the geometry of the dihedral is as shown in

Figure 12. In order to calculate the backscatter results, a slight bistatic angle is

used to avoid numerical limit difficulties when approaching indeterminate forms

on the computer; alternatively, one could calculate the limits analytically using
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L'Ilopital's rule and calculate the fields without requiring one to Ise slight bistatic

angles. Method of Moments is chosen to validate the results as an independent

check, since both are two-dimensional. Fairly large sized dihedrals can be calculated

using Method of Moments in the 2-D case. In 3-D, limits on computer memory

restrict the size of dihedral that can be analyzed using Method of Moments. A 9 in

2-D dihedral is analyzed at 2 GHz and 10 GHz which means the dihedral is 1.52

and 7.62 wavelengths on a side, respectively. All the patterns are normalized to dB

below a meter, that is a two dimensional cross section.

For the vertically polarized incident field, the backscatter from a 900 dihedral,

Figure 30 shows the singly diffracted (D) term, DR, and RD terms. Figure 31 shows

the D, RD and DR terms combined, the DRD term, and the DD term. This is all

that is required to get the complete result for the 900 dihedral. Figure 32 shows the

result obtained by the D, DR, RD, DRD, and DD terms combined. Notice that the

result obtained by Figure 32 is the same as that obtained by all the terms of the

UTD computer code. (See Figure 45.)

For the backscatter case with strips of equal lengths, based on simple reflection

concepts, the order of interactions required to get the pattern in between the strips is

INT('•"°). Where INT denotes the integral value of (O) Thus, for a = 600 third

order terms are required to get the pattern in between the strips. Figure 33 shows

how only the third order terms for a dihedral of 60' combine to give the correct result

in between the strips. Figure 34 compares the Method of Moments results with that

of the UTD computer code (with all terms present) for a dihedral of 60'. Notice that

the discontinuity at 4 = 600 in Figure 33 and Figure 34 is due the triply diffracted

field which has not been included in the computer code. Our formulation indicates

that for a = 450, fourth order interactions are required. Since the UTD computer

code does not take into account all the fourth order interactions, we expect no

agreement of the results in between the strips. This is shown in Figure 36. However,

even for this case, notice the excellent agreement for 0 greater ',hen 50'. Thus, for the
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Figure 30: D, DR, and RD terms for the backscatter for 9 in 900 rectangular dihedral
at 10 GHz (vertical.ly polarized).
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Figure 31: All terms of the above figure, DRD, and DD terms for the backscatter
for 9 in 900 rectangular dihedral at 10 GHz (vertically polarized).

C-T

0 60 120 180 240 300 360
¢ (deg.)

Figure 3'. All terms required to get the backscattrr result. for 9 in 900 rectangular
dihedral at 10 GHz (vertically polarized).
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term.- present in the romptler code, the pattern would worsen gracefully in between

the strips for a less then 600. As the angle of the dihedral becomes smaller, more

terms are required to give the correct result in between the strips and a "cavity"

effect results.

From here on, the UTD results contain all of the terms discussed above. For the

backscatter case, from Geometrical Optics, a main beam is expected when the angle

of the dihedral is such that is an integer. This is clearly evident in Figures

32, 35 and 36. Also, as the angle of the dihedral diverts from at, which makes

an integer, the main beam falls. Figures 37 to 41 show backscatter results for a -

85, 92, 94, 95, and 120' with the incident field horizontally polarized. As expected,

the main beam of the pattern for a 9 90' falls as a is decreased or increased.

The backscatter field for the 2 GHz case is shown in Figure 42 for horizontal

polarization and in Figure 43 for vertical polarization. The 10 GHz backscatter

case is shown in Figures 44 and 45 for the horizontal and vertical polarizations,

respectively. Patterns for a fixed bistatic angle of 90° are shown next. The 2 GHz

case is shown in Figure 46 for horizontal polarization and in FigurM*7 for vertical

polarization. The 10 GHz patterns are shown in Figures 48 and 49 for horizontal

and vertical polarizations, respectively. In all cases the agreement is excellent. The

small dihedrals have slightly more disagreement due to the fact that the higher

order interactions are more important. It is assumed that even better agreement

and/or smaller sized dihedrals could be achieved by including more interactions.

For engineering accuracy, however, this woild not seem to be necessary in this

application.
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Figure 33: Only third order terms give continuous result for 9 in 600 rectangular

dihedral at 10 Gf~z for horizontally polarized field (backscatter ).
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Figure 34: Backscatter field fromtu a 9 in 60' rectangular dihedral at 10 GHz for

horizontally polarized field.
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Figure 35: Backscatter result for 9 in 600 rectangular dihedral at 10 Gliz for hori-

zontally polarized field.
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Figure 36: Bac~kscatter field fr,'m a 9 in 4•° rectangular dihedral at 10 Glhz for

horizontally po'arized field.

(6(



0 15 30 45 60 75 90 05 120

(0 (DEG.)

Figure 37: Backscatter result for 9 in 850 rectangular dihedral at 10 GHz for hori-
zontally polarized field.
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Figure 38: Backscatter result rkr 9 in 92' rectangular dihedral It 10 Cltz for hori-
zontally polaried field.
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Figure 39: Backscatter result for 9 in 940 rectangular dihedral at 10 GHz for hori-

zontally polarized field.
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Figure 40: Backscatter result f,,r 9 in 95' reclangilar dihedral at 10 0Hz for hori
zontally polarired field.
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Figure 41: Backscatter result for 9 in 120' rectangular dihedral at 10 GHz for

horizontally polarized field.
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Figure 42: Backscatter field from a 9 in rectangular dihedral at 2 GHz for horizontally

polarized field

63



20

--- MM

0-

E 0 36 so 9o 20o Ws egoo 210 240 270 00 so no0

-20

-3 300.GL

Figure 43: Backscatter field from a 9 in rectangular dihedral at 10 Gllz for hortizon-y
tlypolarized field.
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Figure 44: Backscatter field from a 9 in rectangular dihedral at 10 GHz for horticalny
tlypolarized field.
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Figure 45: Backscatter field from a 9 in rectangular dihedral at 10 GHz for vertically
polarized field.
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Figure 46: Ninety-degree bistatic field from a 9 in rectangular dihedral at 2 GHz for
horizontally polarized field.
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Figure 47: Ninety-degree bistatic field from a 9 in rectangular dihedral at 2 GHz for
vertically polarized field.

20 
-"_TD
---- MM

E 0 [ - • !

*u 60 I30 GO 0O 240 I270 s00 30 34

-tJo

--30 
/

I *

_40R

Figure 48: Ninety-degree bistatic field from a 9 in rectangular dihedral at 10 GH7z
for horizontally polarized field.
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Figure 49: Ninety-degree bistatic field from a 9 in rectangular dihedral at 10 0Hz
for vertically polarized field.
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SECTION 4

Rim and Curved-Surface Caustic
Corrections

1 Introduction

The Geometrical Theory of Diffraction predicts infinite fields at ray caustics. The

occurrence of a caustic requires that the erroneous ray field infinities be "corrected"

with transition functions which blend the well behaved wide-angled ray field predic-

tions smoothly into the corrected or bounded values at the caustic. Details of rim

and curved-surface caustic corrections can be found in References [20, 21, 221. Al-

though theses solutions are based on equivalent edge and line currents, the modern

MEC (Michaeli et al) provides essentially the same result.

Ryan and Peters [20] developed a solution in the rim-caustic regions based on

the field radiated by equivalent edge currents on the rim. This result goes to the

diffraction point solution outside the caustic region; thus, it is a uniform solution.

In Reference 1211, this technique is extended by the use of the "stripping concept"

[23, 24] in addition to using a small argument approximation to the diffraction

coefficient in the specular caustic region of the radiation integral. This solution

referred to as the "Bessel-Struve function extension," provides an accurate uniform

result in the rim-caustic region that is associated with a specular or forward-scatter

direction of disks, end caps of cylinders, cones etc.
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The need for the clfrved-surface specular correction arises from the fact thaft

the classical edge diffraction coefficient, being a local phenomenon, has no a priori

knowledge of the variation in curvature along a curved-surface away from the edge.

If the radius of curvature is equal at both the edges of the curved-surface, as in

the case of the cylinder, the total field along the specular direction will be correct.

However, if the radii of curvature are different at the two edges of the curved-surface

(for example, cones), the energy spreads differently at every point on the curved-

surface, depending on the radii of curvature. Since this information is not built

into the classic edge diffraction coefficient, the edge diffracted field is not able to

match into the reflected field in the specular direction whose dominant behavior is

as predicted by physical optics (PO). Using procedures similar to References [20, 21]

and extending them by asymptotically matching the PO solution for the reflection

from the curved face into the UTD solution, Ebihara [22] extracted a transition

function useful in the curved-surface specular region.

In Section 4.2, the equivalent-line current solution procedure [25] is presented.

In Section 3.1, the equivalent-edge-current solution of Ryan and Peters is presented.

Next, in Section 3.2, the Bessel-Struve function extension is examined. Finally, the

curved-surface specular correction will be considered in Section 4.

2 Equivalent-Line Current Solution Procedure

The following steps are used to find the equivalent-line solution:

1. The field of a canonical problem is obtained (a two-dimensional solution).

2. Next, the radiated fields from infinite travelling-wave line currents, I' and I"',

are determined. I" is an electric current and I"' is a magnetic current.

3. The currents I* and I" are substituted for the two-dimensional solution,

and the currents F and I"' are then adjusted to give tie same field as the two-

dimensional solution. In the principal plane, P' gives the horizontally polarized
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field, and T'." gives the vertically polari7ed field. These are "fictitioiis" nurrent.vs that

vary with the incident and observation positions.

4. These equivalent line currents are broken up into infinitesimal current ele-

ments. The current elements are placed at the equivalent locations on the surface.

5. The radiated fields due to the above currents are evaluated. This involves

a line integral. The resulting expression is the equivalent-line current solution. It

gives the correct value of the field away from the caustic direction.

3 Rim Caustic Correction

3.1 Ryan/Peters Equivalent-Edge-Current Solution

Ebihara [22] used the original work by Ryan and Peters [20] to get the standard

diffraction coefficient with rim caustic correction function, Figure 50. There appear

to be some sign discrepancies early in the derivation in [22] which result in incon-

sistencies in the final result for the hard polarization using Equation 5.225 in [22].

In this section, the standard diffraction coefficient with the transition functions are

defined for consistency.

The equivalent edge current used by Ryan and Peters are

F si2jG' ((. F'(O)) eJkr'' (126)77k sin ,3, sin • 16

and

.ksinflosin/3,,/ (6.f'(0)) e•kt?', (127)

where
1

G' (4',,,)) -(A - B), (128)
2n

1
G". (I,P,') - (A + B) (129)

2n

and

) cot ( 2n +( cot ))2 ncot ((I,( - ,) , (130)
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B (4i,4V) = cot ( 7r4±( cot 7r- (4ttF) (131)

These currents are distributed on the illuminated edge of the rim. The radiated

fields due to the electric and magnetic equivalent edge currents on a circular rim are

S= acossi e j r,2w L.E'(0)) sin (41- 4,)eikr"('+"')do,, (132)

27r r I sin ' (0))eJr.(rd 4 c
E -2 r L sin-,, (2. G, (0)) cos(41 - 41,.)ejkr+r,)dc., (133)2v r Z s !

E;= a e-j,,2T ",o (134)E• 27r r- sinZ ( 0"g())cs€ o-;"(÷'J

and

E n -a7l cos 9 e -J k f2r G"'
27r r , f H ' (0)) sin(41- 4,)e~k "(r+F')d41"" (135)

The diffracted field is the sum of the fields radiated from both electric and magnetic

equivalent currents, so that

, Eo + 4E.,, (136)

where

E,- E, + E7 (137)

and

Eo Eý + Ef". (138)

To simplify the integration in (132)-(135), Ryan and Peters used the approxima-

tion that the diffraction coefficients remained relatively constant with respect to the

variable of integration, so that

Gconstant in q5,. (139)

sin ,,

Let

kah, ((140)

ke ko sin O'c,)s ' 0b,) t s,,10 -cs ((,h ) (141)
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and

3, kz.- (ý + i'). (142)

Using the previously mentioned approximation and the fact that

J sin 0, cos O,.ej"Wd = 0, (143)

the expressions for the radiated fields become

a. e3j le C1kr ( 27rE6 = -e- E'",I-f Co0," ej"d,.°
E 2r sinO3,, r EiG" cos2 4.

-G.. cos 0 cos 0,J sin 2 d,.ej"'dc d} , (144)

and

Eo =2ir sin /,, r E0IG cos 8 cos 0'] sin 2  C: .Si,..

-G`' cos 2 4,e (145)

where

U cos ,0.. (146)

Let the following integrals be defined by:

F, (U) = cos" €, e"LIdo, (147)

7 (o) 2  O (148)

f; (U) =f cos 2 ,e"j.d¢, (149)
7

F2(U) = cos 0 cos 0' sin 2 ¢, e'" do, (150)

f2 (U) = cos 0 cos 0' sin 2 4,, •d'',4,, (151)

f; (U) O ,.oo'f0 sin 2, r, ,c•,L ,. (152)
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These integrals can le evaluated in closed form as follows:

f,(U)=iW[(J,(U)- JI(U)) +j(H,(U) H,(U))] (153)

where J1 and H1 are the first order Bessel and Hankel functions, respectively. The

expressions for the radiated fields are

E,.a e1" e-jkrES2(sin) ,, r it I{- (A-B) + (AU + B)F_} (157)

f2a e(U)' e= CS , 1
f; (U) = 7r ES2r-0-(A-B)Fj+(Hi+B)F }" (158)

The above can be rearranged into

E,ý -a eJ 7, e-jkr E' 1
2w sin,3,, r {A(F 1 - F2)2- B(Fn + F2)} (159)

a ei" e -j 1
2s- E2-{A(F- -F 2) +B(F ±+FB)}. (160)

2v sini9,, r 2n

Breaking the integral apart into

F1 (U) ,f (U)-+ f(U) (161)

F2 (U) = f 2 (U) + f; (U) (162)

and further manipulating them gives
-a ei" e-jkr 2n

Ei- as ,-•e2 {a(fA - F2) - B(f, + f2)

27r sin/9P. r 2n

F )- B(f(U (U f)} (163)-a eil, e e-jkr 1

40= a Je I E'~ {A(f, -12) - B (f I + 1M27rsin fl,, r 2n

Eo = a esn0, r-k E,; IIA (f- i f) 4- B(fI + f2)

VA (f f.) 4 B(f; 4- f.)}. (164)
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Now, consider associating a half-rim integral with the points at 0, -- (1, 7r, the

stationary points for a large 0b,; they are also the diffraction points on the rim for

the principal plane. From the above equations, the field contributions from the half

rim associated with 4b, = 0 are

--a, ef, e-jkr

E,0= E;,{A(f, -f 2 )- B(f, +-f,)} (165)
2wrsinf3 r(15

a ej"l e-jkr
Eo = 2A EA(f, -f 2 ) + B(f, + f2)} (166)

7-r s-in/ 0, r

E;'= ýE,ý + BE,0 . (167)

Comparing this with the expression for the edge-diffracted field from a point on the

rim,

E, ='(Q, )epd(Q, j eJkr (168)

the new diffraction coefficients may be expressed as:

D(Q,) = *-O')D.,(Q,) - 414'Dh(Q,), (169)

where

D, 2nv/.- sin=/, (AT,,(U) - BT,2(U)) (170)

D (AT,,(U) + BT,2 (U)) (171)Dh 2n v/2-k sin/3,,

where
7rU(12

TI(U) = - (f,(U) - f2 (U)) - (172)

1_ - (173)
T12(U) = (f,(U) + f 2 (U)) Ue (1

7r 2

and

U(Q,) - ka, i, .(i + i'). (174)

The functions T,., and T.2 are the transition functions through the rim caustic region

based on the Ryan/Peters equivalent-edge-current solution. The transition functions
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have small and large argument form.i which are obtained using the series and the

asymptotic forms of the Bessel and Struve functions, so that for

JuI << 1

T, .(U) V 2

{ 1 - 3 + - Coso -

+j 2U [2 (1-- 2U2) - cos0cos0' 2- (175)

+1 ~ ~ -- Z4 cs o

T,.2(U) -- - +2

1 3U2  U - U2\
+ - + c os Cos' -_2 8 32 \~ 8J

2U ( 2U 2 ) (176)3j- 12--1 -- co5co1

j9 39 j45
8U + 128U 2 - 1024U:'

- Cos 0 Cos O' - + 3 ),
cosos U 8U2  128U:)

-- eU [- cos 0 cos 1 + -2) +(

T2U'I--j9 39 j45
Tr 2 (U + 128U 2 

-1024W'

4f cos 0cos 0' (-j + 3 _ j15

(-U 8U 1\ 21U:

+ ~ ('T [coOOcosO' I + -2 U (178)

Associating a half rim to the stationary points Q and Q2, the total field radiated

by the equivalent edge currents nn the rim may be written in the diffraction-point

form

76, 1 9, (179)
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where

= E=k (Q) Q )ejkr4 e (180)

and e-jkr

t,2 = .(Q2) pd(Q2 )eJkr' (181)
r

3.2 Bessel-Struve Function Extension

One problem associated with the Ryan/Peters result is that the approximation (139)

becomes invalid for a rim caustic associated with an end cap's specular or forward-

scatter direction. To overcome this difficulty, a modified edge vector 6" is used. It

is defined by

" :(j.), (182)

where
'+ ) h, (183)

J(P + i) X fl

k, = normal to the end cap

i' =direction of source, and

i = direction of receiver.

By using the modified edge vector, only the perpendicular components to the

plane of incidence of the equivalent edge currents are considered. This is called the

"stripping concept." The equivalent edge currents with this modification are given

by
I"2= kiGi (. '(O)) eJk•°' (184)" Tqk sin 0•,, sin /3,'

"= k2jG'- . (185)

k sin 0,, sin 7, ( • ( ) (185)

The modified equivalent-edge-current solution is obtained in the same way as before.

To simplify the evaluation of the integral, the following small argument approxima-

tions are used:

0 0 0' - E ,in the spcular region, or (186)
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0 9 7 - 0' - c, in the forward scatter region. (187)

This results in
G""" 1

SsS (188)sin #,, sin E•' Cos #

and the integral

F.(U) cos 0ielI"e ' dc, (189)

which can be evaluated by using

f, (U) cos 0,el1( 5 O
2

7r 2 H, (U) + jJ, (U)] (190)

Associating a half rim to the stationary points Q1 and Q2, the total field radiated

by the equivalent edge currents on the rim may be written in the diffraction-point

form

E,,r = E,: + E2,• (191)

where
g d .- jkr

,d = E'.D(Q,)pd(Q)eirki (192)r

E2 = g'.D(Q2) ) d(Q2)e r,'- (193)
r

The modified diffraction coefficient is

D(Qr) -#'D.,(Q,) - ý4DýO(Q,) (194)

D.h=-e-/ f co 17r ~ +_+_ot _7

=2nV2-7r kco I 2n ) 2nt(;

( cot (+ #+~ + cot ( #+ T,)} T(U), (195)

where

(196)

U = kan, ,-(f + ÷', (19+f)
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T, (U) = I f , (U) TU (198)
2

and

f. (U) = 7r I-7 _HII (U) + PI (U)]. (199)

J, and H, are the first order Bessel and Struve functions, respectively. The transition

function is T, (U), k is the wave number, a and ft, are the radius of curvature and

the normal to the edge at the point of diffraction, and f and i' are the directions

to the source and the receiver, respectively. The transition function has small and

large argument forms given as:

for JUI << 1

T. (U) - ){( (200)

for JUl >> 1

T (U) , 1 + ;1 U 2 + 15 j105
8U U 7rU 128U:I 1024U:(2

4 Curved-Surface Specular Region Correction

Details of the curved-surface specular region correction are presented in [221. Re-

ferring to Figure 51, the term of the diffraction coefficient which "blows" up in the

specular direction is corrected by the inclusion of a transition function. This result

goes to the diffraction point solution outside the caustic region, making it a uniform

solution. The specular terms from the two diffraction points with the correction are

given as

. -rcot ( r - (C, T ', T ( +jXa,) (202)

D,. A,. I2nV/-7r- sin o 2n f202

and

r4 -e 7 + *-) , 2s
=.,h R..,h cot (_ T T -jXaj (203)
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Figure 51: Geometry for curved-surface caustic correction.
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The radius of curvat.ure of the diffracting edge is a,, and

X = K cot a,. [tan2 a,: (cos2 V + IE sin2 s ) + 1]1/2 sin ,

2cos COS (204)

where the O's are measured from the curved surface, as shown in Figure 51 and E,

is the ellipticity of the curved surface. The transition function is given as

T(z) = T,(z) = 2 zM(1,2.5,-z) (205)

or

T(z) = T2(z) =-zU(1, 2.5, -z), (206)

where

U(1, 2.5, -z) -111(l,25, -z) + --E-2-z)-le', (207)

and M and U are confluent hypergeometric functions. The small and the large

argument of the transition function are the following:

for IzI << 1,

T,(z) ;t e-' + + + (208)

I - 2z 2Z2 +Z-3\
T,()) e-2 - + + - (209)

for IzI >> 1,
T,(z)- • + 2 e-z 1 1 (210)

1 1
T2(z) --• 1-- 4z" (211)

2z 4Z

The new diffraction coefficient can be expressed as:

D (Q,) = -/'3D:(Q, D)-•'D (Q, (212)
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where

"A' 2 nV%/ -7 ks ii n j, 1~ 2n / 2n /

R.,h cot (7r + (41+ + cot (. + V) T(±iXa.) (213)

- 'Fl. (214)



SECTION 5

Top-Hat

1 Introduction

The study of scattering from the top-hat has been of interest for a long time. Among

some of the latest work is [261. Which uses physical optics to get an approximate

backscatter result. In order to get a more accurate UTD result, the 2-D dihedral

discussed in Section 3 can be extended to get 3-D results for a wide variety of prob-

lems. The solution of the triangular dihedral in the principal plane is discussed in

[13] is the starting point. A few modifications are required to the UTD 2-D analysis

of the dihedral in order tG obtain the solution to the top-hat. The high frequency

solution is validated against a moment method body of revolution result [27]. For a

900 dihedral, as seen in Section 2, the number of important terms decreases signifi-

cantly for the backscatter case. It is shown that a complete solution can be obtained

by including the D, DR and RD, DD, and DRD terms.

For the top-hat, a UTD result is obtained from the important terms which is

valid in all regions for backscatter and is reasonably simple to program. Also, in

the dihedral region, the dominant result is further simplified to provide approximate

results. The parameters for the top-hat are shown in Figure 52.
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2 Double Diffraction Simplified to Retain the
Significant Part

In order to obtain a redalt which is valid in all regions and is simple to program, it is

necessary to extract the dominant part of the dotible diffraction for the backscatter

case when the two diffractions are occurring from the same point. This is only

possible in terms such as DRD.

The double diffraction formulation for the joint wedge, discussed in Section 6, is

used to get the dominant part of the the double diffraction coefficient. In this case,

nf = n2 = n, a, = aq = a, 4t,, =_ -N P, and d are the same as defined in Section

6 for the joint wedge. In order to get the dominant contribution, it is necessary

to choose 4t = r - (n~r - 0), where the angle, 0, is measured from the 'o' face, as

shown in Figure 9. Also, the distance parameter, d, is the distance traced by the

ray between the first -nd the second diffraction points. For this case, the double

diffraction coefficients, P, and Pl,, Equations (45) and (46), can be simplified to

S a"i
P, (Q1,,QI): (4ý,n, d)

8 •rj n ' sin '( ,---•)

d [(j + )Fkda] - i ) (215)

for a TM plane wave (with the electric field parallel to the wedge), and for a TE

plane wave (with the electric field perpendicular to the wedge),

P,, (Q,Ql) = F1,(4,n,d) -47r1 cot 2 (

daKi- Fkdl -j e- y-'-- \ (216)

For the top-hat, these equations are uwed to get the dominant contribution from

DI RD,, D:;RD:i and D4RD 4 terms.
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3 Modifications Required

Basically, rim caustic correction and spread factors are required to modify the 2-D

dihedral solution to obtain the solution for the top-hat. In Section 3, it is shown that,

for the backscatter case, the most dominant terms for the 900 dihedral are diffrac-

tion, diffracted-reflected (DR), reflected-diffracted (RD), and diffracted-reflected-

diffracted (DRD). The dominant contribution from these terms are used to get the

result for the top-hat.

3.1 D, RD, DR and DRD terms

For the backscatter case, referring to Figure 52, using Equation k25), the diffracted

terms from the disk is given by

isk = U.h, K2- - TR, (2kbsin (0))

•2b ej,,A(b,_)•i,,(o),(17
2 sin(0 ) (1)

and

Udi., I V 21 + R, ( 9h Tr(- 2kbsin(0))

2 s i n ( 6) e ? e e )2 k ( b na ) s i n ( O ) e _ l k b l i i i( O ) )

0 < 0 < tan-' [b], (218)
] <7r ,

where R,,h = T-I and

E, E field perpendicular to the pattern plane (219)
H, H field perpendicular to the pattern plane.

Using Equation (13), the diffracted terms from the cylindrical surface are

Uf,, up 2c -/ sin (?-5) 1 8rut : .4.,. 3.V,/ 7 Co s ( , ) 1
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R,1,,co (Lv)- co ( L, (2,cka,,•in )

V 2 sin (O)

-<+ + tan , (220)
2 n [bal

and

2 n- (Ž) [ s

R.h 1

R ~j~-c(.i,+7) T,(-2ka sin (9))

2 s ixi (9 j2k h~(-s(fl)e -.1 kasirtQ?).

< < " '. (221)
2

The diffracted-reflected terms, obtained by simplifying Equations (79) and (80)

and modifying for curvature and the caustic correction are given as

U1".' + U".1" U, -_. T, (2ka sin (8))
27rk

R4sin(•f) (2 )] + j2khsin(O) 2sin ()'R'3 [COS 3• i-qo +

and
_e-.Tnr/4

U" + 1 + U""' == U;h 2 -2v

{1 a=
2R._j, Co j4k (b -a) co-z(0) sn()

Irb- a] 7r-
tan-t < (223)

h 2

For the DRD terms, as discussed in Section 2, only the dominant part is retained.

The dominant part of DRD, where the diffractions are from the disk, is

U"' '' = R,, U...,, ,, --- - - -z 2,1d- 2(b -a)
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\\Pl--b) 1 P+( r ) P2 e j2k(6-n) sin(O) (224)(PI + (b - a)) pr + (b - a))o

where
b

sin(O) -' (225)
OP = ((b - a) + pl)a (226)

a + 2((b - a) + p,)'

b((b - a) + pr) (227)

p2 b + Isin(O) - 11 [(b - a) + p"l'

and P., (ii,n, d) is given by Equations (215) and (216). The dominant part of DRD

terms, where the diffractions are from the cylindrical surface, are

U"'ll? = K,.h1U•,hP-,h (I- O,,n = 2, d = 2h) T, (2ka sin (0))

a2 ej2kh ,,s(O)

2(a + h sin(O)) sin( )

0<0<-_ -tan-' [h (228)

and

U 1 4 // ) -I R.j, = 1 ýt, U . • h , = 7r
.1• (4U 2 + o,n = 2,d = 2h) T(-2ka sin (8))

a2 
_______ e' 2 kh r..(f) l~knsi(

2 (a + h sin(0)) sin(O)

0<0<I. (229)
2

4 Dominant Result in the Double Bounce Re-
gion

It is shown in Section 2 that the diffracted-reflected type terms, RD and DR, may

be combined to give a dominant result in the double bounce region for the dihedral.

For the top-hat, a result in the double bounce region can be obtained by modifying

Equations (79) and (80),to take into account the curvature, so that

+0B j 2asin::O1), rb-al
it.+ U1. 1, e 4 h; 0,.,,, < 0 < tan-' h (230)
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and

do""'"""' U~ - ," sin(o) -b- a)cos(O); tan-' (231)

In Equations (230) and (231), 0,,, is an angle that is chosen such that the specular

from the disk and the top of the cylindrical rim are not significant. This is necessary

since these equations do not consider singly diffracted fields. A reasonable choice for

, is approximately 100.

5 PO on the Axis of the Top-Hat

Along the axis of the top-hat, the cotangent terms of the diffraction coefficients that

tend to "blow" up and combine to give the dominant result. Not surprisingly, the

dominant result obtained is exactly as one would predict from physical optics 1201.

As expected, at the z-axis, the reflection boundary cotangent terms associated

with the diffraction from the disk (Equations (217) and (218)), give the area of the

disk. The reflection boundary cotangent terms associated with the diffraction from

the upper face of the cylinder (Equations (220) and (221)), give the area of the end

cap. The incident boundary terms from D:,R, RD:3 and D:,RD:i (Equations (222),

(228) and (229)), give the negative area of the end cap. Thus the apparent "infinites"

combine to give a result which equals the area of the disk minus the area of the end

cap of the cylinder plus the area of the end cap of the cylinder with the phase taking

into account twice the electrical distance of the cylinder. The RCS along the axis of

the top-hat is appropriately given as

," =- 4 7r r(b 2  - a2 ) 7ra 2  (2 2)
no, .,,,, Ao=,,A A A (

6 Results

Figures 53 and 54 compare the results obtained for the 00 and € polarizations by

the UTD computer code and the Body of Re:volution code at 10 GHz for a top-hat
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Figure 54: Backscatter field with 00 polarized field. The solid line is UTD solution
and the dashed line is the BOR solution.
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of cylinder of dimensions a.= 2 in, b= 4 in, and h= 4 in. The results compare well

with the body of revolution code.

7 Bruderhedral

A bruderhedral is a reflector that is an angular sector of a top-hat. (See Figure 55.)

Fundamentally, the solution to the bruderhedral is the same as that of the top-hat,

discussed above. In the region, 0 < 0 < 900, the scattered fields are determined

from Equations (217), (220), (222), (223), (224) and (228) with T2 (U) replaced by

Tj,,-io (U) which is defined as:

at m,.io (U) (U) •( U e cos #eJu'c'r de, (233)
" 2 . -bo

where - < 0 < Ob,,, is the angle made by the sector of the bruderhedral.

8 Results

Figures 56 and 57 compare the results obtained for the 88 and qS4, polarizations

by the UTD computer code and the measurements at 10 GHz for a bruderhedral of

dimensions a= 107 cm, b= 115.9 cm, c= 30.5 cm and h= 8.9 cm. The measurements

are courtesy of D. Blejer of MIT, Lincoln Laboratory. The lip of the model used in

the actual measurements is believed to have edges parallel to the y-axis, as shown in

Figure 55. The UTD results have edges along constant radial lines. The differences

are expected to be minimal since a is much larger than the difference between b and

a. The results compare well with the measurements.
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Figure 56: Backscatter field with 00 polarized field. The solid line is UTD solution
and the dashed line is the measurement.
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Figure 57: Backscatter field with 4,4' polarized field. The solid line is UTD solution

and the dashed line is the measurement.
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SECTION 6

Bi-Cone

1 Introduction

The methods used to analyze the top-hat in the previous section are very similar

to those required to obtain the scattered fields in the far-zone from the bi-cone. In

general, all the terms discussed for the UTD 2-D solution of the dihedral in Section 3

have to be modified to take into account curvature and specular caustics. However,

by putting a restriction on the bi-cone that the sum of the cone angles, a,, and

a,.2 in Figure 58, is a right angle, for the backscatter case, the number of important

terms decreases significantly as seen in Section 6. For this case, a dominant UTD

result is obtained which is valid in all regions and is simple to program. Also, in the

dihedral region, the dominant rmsult is further simplified by using only the double

bounce terms to provide approximate results. Figure 58 shows the parameters for

the bi-cone.

2 Modifications Required

Basically, it is only necessary to change the caustic corrections and spread factors

in the 2-D dihedral solution to obtain a result for the bi-cone. Two types of caustic

corrections are needed. One is the rim caustic which is discussed in Section 3 and

94



2yxz
D2C C D2

2\\ t

43

Figure 58: Bi-Cone geometry.

95



used in the solutinn of the top-hat in Section 5, and the other is the curved-surface

specular region correction whic!, is examined in Section 4.

3 Dominant Result

The bi-con; thas the same type of dominant mechanisms as the 2-D dihedral. In order

to simplify the problem, it is necessary to choose cone angles such that a,, + a, 2

900. Thus, as for the 2-D dihedral discussed in Section 6, the dominant result is

obtained from diffracted (D), RD, RD and DRD terms for the bi-cone.

3.1 D, RD, DR and DRD terms

The expressions shown below are for backscatter from a bi-cone of parameters given

in Figure 58. Also note that

a, sin [ a], (234)

a, 2  sin-[' ]c- a, (235)

3 arr.
n, 3 + -, (236)

2 7r'

and
3 ofr2

n2 • +-. *(237)
2 7r

Using Equations (25) and (26), the diffracted fields from the upper rim of the

bi-cone of radius c is given by

U", = U;,h,1, -_ 2cot + R,, - cot

2n2 V"21r t.I2

+cot (n2 T ( k (c- -a) 2cos(2a,2 - 20)) T, (2kcsin0)

v2si (238)
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anid

e sin ( ) [
n2v, .cos() -[1
1

c -., Cos I (-o_20) T,(-2kc sin0)
?1 O n7 .

2s e ' .2e -, (" .(0 c".2)ei lk -it?; .

0<-. (239)
2

The diffracted 6ie! from the lower rim of the bi-cone of radius b is given by

-= U,h nf 2 cot (7r) + R.,.h {cot 7r

j. V kI2 sn, 0j+ cot 2 -) T_ (-Ikb ( L 2 cos (2ae 1 + 20) T, (2kb sinG)

e--n = u,,,,,, _ (240)

and

e 1

R,. (, I -, T, (-2kb sin 0)
Cos ( -- cos (2!.izw)

b E e-2k1I c.-.(O+nl je- lkbinO.0

2sin 0:eG

0>r (241)
2

The purpose of the curved surface specular caustic correction for the DR and

DRD terms is twofold: to ensure continuity of the fields, and to obtain the physical

optics result for the visible part of the cone in the specular direction. This requires

that for the diffraction-reflection type terms, the caustic correction is associated

with the incident shadow boundary. After simplifying Equations (70) and (71) and

modifying for curvature and caustic, the diffraction-reflection terms are given as

-e+ " 1 { (.r - 0+ at)
U0111 + URD = U.'h 4,--- R.,. Cot
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0ct 2 TL k~ I 2 cos (2a,-, + 29))

I I I I I i I

+-Ccot (2) -j2n2 kl 2 sin(- a, 2)] (p2r +P

ac2 < 0 < a,.2 + tan-' (242)

and

U°'1 + U"°" = U..h_-e R.., cot --n )

+ cot I7+a,, TIjkaI 122cos (2a:2 - 20)Inj) V a )
(1 7r 

r2 d2pl
+cot ( - j2n,kli sin (6+a,:,) ari2+P

n, I ) ( ± 82)

a.2 + tan-' [-] < 6 < r- a,.j. (243)

In the above equation for D, R and RD, terms

r - R:, I, (244)P2 - 2 sin (6 + a,,,)'

a - 12 cot (0 + al) sina,, (245)
COS Ot'-.I

, = C + +pr(c(2 +p6)')

c-(s, +p')(sin0 + sin(O - 2a,-2 ))

and
12

sin(O + a.)2 (247)

and for Di:R and RD:, terms

r;2 = R.r2
2sin(0+a,2)' (248)

a + 11 cot (0 - a,.2) sin a, 2cos = , (249)
COS Otr2

p d2 b(S + A.) (250)
b+ (S2 + p2)(sin 0 + sin(0 4 2,2))(
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and
'I

S2 si(-,)(251)

For the DRD terms, as discussed in Section 2, only the dominant part is retained

for the joined wedges solution. The dominant part of the DRD term in the region

where z is positive (especially around 0 aC,2 ) is

U1"i R .IU..P. (R', = - a,.2,n n2 ,d = 212)

T, (ika (b"k a) 2cos(20 + 2a,.))

G pr d2\
pr 19 p e , (252)\J I~pl + 1 + 12) d ~I ~(-~

and in the region where z is negative (especially around 0 =7r - c,-,

U031M1 =R.,,,.i ( (7r - ao (- ),n = ni,d =2,)

Ti (jka 12.a) 2 cos (2aC- 20))

p(- l ) p,. ± ,) pd' e-j2k'l c-q(O+,t,1 (253)

In Equation (252)

elI C
sin 0 - sin a2' (254)

(Pdi + 12)a a

a + (p"' 4 ,)2cos (255)

d2 + (prI- 4 12)c(256)
S- c + 12)(sin g - sin,)' (256)

and in Equation (253)
b

sin 0 - sin ,. (257)

,r2(Pd + 1,) a(258)
a + (pd3 + l1 )2cosa Ce(58

and

pr1 = (p' 4 - (,)9c
c (p"-' ý 11,) (;in 0 - sin c,(259)
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4 Dominant Result in the Double Bounce Re-
gion

It is shown in Section 2 that the diffracted-reflected type terms, RD and DR, may

be combined to give a dominant result in the double bounce region for the dihedral.

Modifying Equations (79) and (80), to take into account the curvature, a result in

the dihedral region for the bi-cone can be given as
U ',r), +o n I? j.1 212 Ipla

,.,,e,.., hepr+d sin (6- ao:2);

r2+ Oc,,g < 0 < Ct2 + tan- [1] (260)

and

1+ 11 ) I 2 1 , i p 22 p d 2u( + 2 sin (0 + cz);

kck2 +tan [- 1 j < 0 < 7r - a11 - Orill. (261)112

Using Equations (244) to (247) in Equation (260), and using Equations (248) to (251)

in Equation (261), the dominant contribution from the double bounce is obtained.

An angle, &,,,, is chosen so that the specular from the curved sides of the cones

are not significant. This is necessary since these equations do not consider singly

diffracted fields. A reasonable choice for 0,,, is approximately 100.

5 Results

Figures 59 and 60 show the results obtained for the 00 and q54' polarizations by the

UTD computer code and the moment method body of revolution code [27] at 10 GHz

for bi-cone of a = 0.5 in (0.42 A), b = c = 2.0 in (1.69 \), and 1, = 12 = 1.5v/2 in

(1.8 A). Considering the small size of the bi-cone, the results compare well with the

body of revolution moment method code.
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Figure 59: Backscatter field with 00 polarized field. The solid line is UTD solution
and the dashed line is the BOR solution.
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Figure 60: Backscatter field with 00 polarized field.The solid line is UTD solution
and the dashed line is the BOR solution.
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SECTION 7

Parallel Plate Cavity and Circular
Cavity

1 Introduction

The study of scattering from a parallel plate cavity and its three-dimensional coun-

terpart, a circular cavity, has been of much interest lately 128, 29]. These shapes

may be used to model many common objects. For example, the parallel plate cavity

can be used to represent the dominant scattering from a truck bed and the shallow

circular cylinder cavity resembling a cake pan can be used to represent the dominant

scattering from a wheel hub, cannon barrels, jet inlet structure, et cetera. Thc the-

ory and the results discussed in this section are valid for cavities of arbitrary depths.

However, since the terms in the non principal plane are not included, the smaller

the height to width ratio of the cavity, the wider the range of angles over which

the result is valid. Also, the dominant terms of a shallow cavity are the same over

much of the region (the smaller the height to width ratio of the cavity, the larger is

the region) as for a dihedral, which has been studied in detail in Section 3. In this

section, three dots, "...,will represent one or more reflections within the cavity.

2 Dominant Terms for the Parallel Plate Cavity

Consider the two-dimensional geometry shown in Figure 61. For the backscatter
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Figure 61: Two-dimensional parallel plate cavity geometry.
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case, looking along the z-axis (0 = 0"), the important terms are the diffractions

(DI and D 2 ), diffracted-reflected (DjRb and RjDj) and the diffracted- reflected-

diffracted (D1 RbDI and D 2 RD 2 ) terms. See Figure 62. R4, refers to the reflection

from the base of the cavity. From the study of the basic dihedral mechanisms in

Section 2, it is expected that as 0 departs from 00, the diffracted-reflected (DI&4

and Rb Dj) terms will dominate the solution. However, the angular range over which

the diffracted-reflected terms dominate, will depend on the ratio of the height to the

width of the cavity. The shallower and wider the cavity the larger is the angular

range.

As 0 increases, one set of terms get shadowed and another set of higher order

terms appear. For example, once the DR and RD terms get shadowed the DRR and

RRD terms appear, upon shadowing of DRR and RRD terms, DRRR and RRRD

terms appear, et cetera. From a geometrical point of view, the D, R... and ... RD,

terms are visible in the region (... represent reflections)

tan- [mi] < 0< tan- [(2m + 1)d (262)

where m is the number of reflections before reflecting from the base of cavity.

For example, m=0 represents DIRb, m=1 represents DIRRbR, m=2 represents

DRRIRR and so on. R6 refers to the reflection from the base. (See Figure 62.)

Also, the D,R... and ... RD 2 terms are visible in the region

tan-' (2m+ 1)d < 0 < tan-' (M +i 1) , (263)

where m is the number of reflections before reflecting from the base of cavity.

For example, m=0 represents DRt,R, m=l represents D, RRIRR, m=2 represents

DA RRRRRR and so on. Again, Rh refers to the reflection from the base (see Fig-

ure 62). Given the angle 0, the value of m (number of reflections before reflecting

from the base of the cavity) may be determined using Equations (262) and (263).

Rearranging Equation (262),

2htan 0 - d htan0 (264)

2d d
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Figure 62: Some of the terms of the cavity problem.
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and ir the range of m inrlodfeR an integer, Iiien for the given angle, 6, thle D), •.- t rrm

is present. Thus, the diffraction occurs from the upper left edge of the parallel plate

cavity, and the integral value of m is the number of reflections before reflecting from

the base of the cavity. Rearranging Equation (263),

h tan 0 - d 2h tan 0 - d

d < m < 2d (265)

and if the range of m includes an integer, then for the given angle, 0, the D 2 ... term

is present. rihus, the diffraction occurs from the upper right edge of the parallel

plate cavity, and the integral value of m is the number of reflections before reflecting

from the base of the cavity. Note, in general, for a particular 0 either Equation

(264) or (265) will have an integral value in its range. If both the equations have an

integral value in the range, then there is a shadow boundary at that angle.

2.! D ... and --. D1 Terms

Consider the case of diffraction from the top left edge (DI) shown in Figure 63. The

field from D, ... for a bistatic angle of f, where E is a small number, valid in the

region defined by Equation (262), is given as

Up,...• e-1 •,2m,+2) ( '- t + V )) j.,., ,.4e- k Rý,h cot 4 (266)

where m is the number of reflections before reflecting from the base of the parallel

plate cavity, and

i' =sin60+cos0i, (267)

i: = sin (0 -,E) i + cos (8- E) i, (2608)

F, = -ai+h i (269)

is the position vector of the diffraction point (DI),

, =-(4m + 2) ai •- h i (270)
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Figure 63: D1 '-" type terms.
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is the position vector of the diffraction point (D,) imaged through all reflection,

4---(9- ), (271)

and

4)'V - 0. (272)

Using Equations (267) to (272) in Equation (266),

U''".., _ _ e-ji (1) ,-jA( 1.+2). i" 0 e jk(j(.I+ I )a c..°sO-h sin 0] (273)

The field from ... DI, valid in the region defined by Equation (262), is given as

-e - (4) + 7- ')+
... e Ri•h cot e (274)

with Equations (267) to (270) the same as above and

4ý =- Vn - (0 - E) (275)

and

4)' - 0. (276)

Equation (274) may now be simplified to

U -... _ e (1 )jk(1.+ (277)
V/27rk f/

Thus, the total field from the diffraction occurring from the terms with DI, for the

backscatter case, (Equations (273)+(277) in the limit as E --4 0), valid in the region

defined by Equation (262), is

Uy of al IV'f I -j~m2aqn 2k
-t -h sin 0 - 2ma cos 0]. (278)

2.2 D 2 ... and ... D2 Terms

Consider the terms with diffraction from the top right edge (D 2 ) shown in Figure

64. The field from D 2  for a bistatic angle of c, where c is a small number, valid
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in the region defined by Equation (263), is given as

Uth"' e-J4 R($'+i'. cot (r+ (-'))1 eik(•v'+•"T4, (279)
4V v / 2-- 9

where m is the number of reflections before reflecting from the base of the parallel

plate cavity and Equations (267) and (268) are the same as before, and

i;, = a i + h i (280)

is the position vector of the diffraction point (D 2 ),

1 = - (4m + 3)a i - h i (281)

is the position vector of the diffraction point (D 2 ) imaged through all reflection,

*= (8- •), (282)

and

= 7r + 0. (283)

Equation (279) can now be simplified to

U ),... e-J• ) e-\ ' Im+2)a'inOejkf("n+3)"'"-O-h-in .8

The field from ... D 2 , valid in the region defined by Equation (263), is given as

U...,' ... e R(2,,,+2) •cotr + (t - V) e) (285)4ý -27rk h ot 4

Using Equations (267), (268), (280), (281),

40• + (8 - C), (286)

and

0. (287)

Equation (285) may be simplified to

U .. .D-, (1) e-jk(I"n÷2).%iIsee- j( In4"-0 '1 -I (288)
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The total field from the diffraction occurring from the terms with D,., for Ihe

backscatter case, (Equations (284)+(288) in the limit as f --* 0), valid in the re-

gion defined by Equation (263), is

a ut~ta""h11- e -Jk(tn'+2)nsh'OeJi Vfk [2(7(m + 1) acosO - hsin O. (289)

It can easily be shown that when both the diffractions of DA ... and D 2 ... are at

the shadow boundaries defined by Equations (262) and (263), the terms D- ... and

D2... are continuous, and Equations (278) and (289) may be further simplified. At

the boundary,

0=0,zcol-' [(2 h j-) m= 0,1,, (290)

the field from D ... R type terms is
UI)..+2.

-a cos Ore 4e-iek2h ,,,,O, i,, (291)

At the shadow boundary,

off = co (m, 1) h ; m= o0,1,.., (292)

the field from D -. R type terms is

U'""'}o~o,, :0. (293)

From Equations (264) and (265), as 0 approaches 90', more and more terms are

required. However, from Equation (291) it is observed that as 0 increases towards

900 the result approaches zero, so it is no longer necessary to include these higher

order terms. This should be expected physically since less and less of the cavity is

visible and the broadside reflection from the outer cylinder becomes dominant.

2.3 D...D Terms

Also of importance are the D, ... D2 and D2 ... D, terms. Although, for the

backscatter case, these terms do not contribute to the continuity of the fields, they
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are a-, important as the -... and .-.. ) type terms. It. is fnund that the dominant.

part of the terms, D, ... D2 and D2 ... DI, associated with both the diffractions be-

ing near the shadow boundaries, cancels. However, a significant part remains from

the non-dominant part of the terms, D .-.. D2 and D2 ... D1 , associated with only

one of the diffractions being on the shadow boundary.

Typical results from terms of the type D ... and ... D (Equations (278) and (289)

valid in the regions given by Equations (262) and (263), respectively) are shown in

Figure 65. At the boundaries, Equations (290) and (292), the D.-. and ... D terms

go through peaks (Equation (291)) and nulls (Equation (293)), respectively. In

general, as shown in Figure 65, the D- .. D terms relatively smooth out the peaks

and the nulls of the D-.. and ... D terms.

3 Parallel Plate Cavity Verses Dihedral

From the dihedral study in Section 2, and Figures 15 and 16, it is observed that the

DD across the face of the dihedral balances the slope discontinuity of the DR and

RD terms for the backscatter case. However, as seen in the above section, for the

parallel plate cavity, the D ... D terms relatively smooth out the ripple due to the

D.-. and .. D terms. Thus, the response of a parallel plate cavity is not as sharp

as compared to that of the dihedral.

4 Results

Figures 66 and 67 compare the results obtained by including terms up to 12 reflec-

tions after diffraction and the Method of Moments at 10 GHz. The dimensions of

the cavity are d=4 in (3.387 A) and h=8 in (6.773 A). As expected, the results

compare well with the method of moments.
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Figure 65: Importance of D ... D terms for a parallel cavity d=4 in and h=8 in
with 04i polarized field.
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Figure 66: Backscatter field for a parallel cavity d=4 in and h=8 in with 4b4b polarized
field.
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Figure 67: Backscatter field for a parallel cavity d=4 in and h:-8 in with 00 polarized
field.
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5 Circular Cavity

Consider the circular cavity shown in Figure 68. Apart from the terms present in

the parallel plate cavity, terms with single and double diffractions and reflections

are present that are not in the principal plane of the cavity. However, terms with

diffraction points not in the principal plane are not considered in this study. It is

found that for circular cavities, the smaller the height to width ratio, the larger is

the region over which the terms in the non-principal plane are insignificant. The

circular cavity result is obtained by modifying the terms of the parallel plate cavity

by the spread factor and the caustic correction. The caustic corrections are basically

the same as that for the top-hat discussed in detail in Section 5.

6 Spread Factor Modification

In order to account for the concave geometry, the spread factor has to be modified

to take into consideration each bounce on the circular cavity.

6.1 Spread Factor for R- .D2

Referring to Figure 69, the spread factor for R ... D2 will be derived. For the

backscatter case, the spread factor for R- .- D, is the same as for D, --.. In general,

for m reflections after reflecting from the base of the cavity, the spread factor may

be represented as

r r2 r2
pl p2l P1 P2

Pp,,.rrad frf, r . ,,r I + ) (p r, + S)(P r + . +) ÷ +fpr•(:,n+I) r(2m+I)

1 2 (294)

where

Pr r2 =r(2=+) 0, (295)

P2 -s (296)
P2  si0
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Figure 68: Circular cavity geometry.
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and

S-2a (297)
sine0'

is the distance between two points of contact on the circular part of the cavity. For

the second reflection,
r2 -~2

P2 ~ a (a .prl)' (298)

Pr
2  1 i (299)

a

and for the n th reflection

+ +2
P2 iP~i!(+ r(FI-I)) (300)

P2 (S r(n-.1))(31

and for the diffraction,
r(2m+l)

P P2 +.(302)

Using Equations (295) to (302) in Equation (294), the spread factor becomes

P.prdftfr" P2 P2 P'2 2 1 ~ (303)

6.2 Spread Factor for R ... D,

Referring to Figure 70, the spread factor for R* ... D, will be derived. For the

backscatter case, the spread factor for R ... D2 is the same as for D 2 - - . In general,

for m reflections after reflecting from the base of the cavity, the spread factor may

be represented as

P.Ppread factor P1 P2 +P;1~ ±a( )P'2±

1~, 22? 1 2

_p 1  p2  (304)

r 2 Pr2m 0,(305)
P1 P1 1p 0



11 19

Figure 70: R,.../D, type terms in circular cavity.
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ri = -a

-2sinO' (306)

and
2a (307)

s sin 0'

is the distance between two contact points in the circular part of the cavity. For the

second reflection,
r•2 = s+ p2l

s~2P2- 1 -,i-- (a +p')' (308)

p2 = 1 (309)
1 22,_o(s + p•l),

and for the n th reflection,

3 + pr(,,-1)
pr" 2=Iio( P~-) (310)

, ,..,_o, ( +
1

f2•" = .- (311)
+ 2

and for the diffraction,
2(p; + s) (312)

(p2r'" + 9) 2siiO

and
1

P (2,, 2%inO (313)

Using Equations (305) to (313) in Equation (304), the spread factor becomes

P.sprad fanror [ P2 P2 . .p;2,,.p.]½ (314)

However, if m = 0 (i.e., for the terms D, PX, and RbDj)

P.prrad faror = -] (315)

6.3 Spread Factor for D1 ... D2

Referring to Figure 71, the spread factor for D, ... D2 will be derived. For the

backscatter case, the spread factor for D' ... D2 is the same as for D2 ... D1. In
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general, for m. reflections after reflecting from the base of the cavity, the spread

factor may be represented as
Srl _r) r2 r2

P.*prrad jucor P" P P2 - P'IP 2

_q (p, I +) (pr'l + s) (pr I + S) (p'2 + .) (p; 2 + S)
r2m r2m 1 2PI P2J (316)

""(pr2 + s)(pr" + 8)P2

where

PI ~ -a(37(sinG + sini3)' (317)

5 a- 2a (318)
sin/3

p ,(319)

p -' 2s, (320)

pI 2- = 2ms, (321)

for the first reflection,
p•l = p, + 3

12 2-l. (322)
P2P

P2 1 2i.,, (p' + S)' (323)

for the second reflection,
'.2 = p2l+as

2 1 2Ii.L, (pr, + 8)' (324),

Pr2.- 
1___________

p'22 + (325)

and for the n th reflection,

r(n-1)

PP2 +.qj a? (326)
1 P2 +)'q

P2 "P = 1• ) + (327)

r2tn

P2= P2,,, + )'(328)
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and

= 1 (329)
P2 ~ia-.iO (pr2lfl + a

Using Equations (317) to (329) in Equation (316), the spread factor is

Pmprrad Jarfor = 2 2, 1) s .I l (330)

7 Cake Pan Results

In this section, the results obtained by the UTD method mentioned above are com-

pared with the modal theory. The results for the modal theory are obtained from

129]. Figures 72 and 73 are for backscatter with Oq5 and 00 polarizations for a cake

pan of both the radius and the height of two wavelengths. Figures 74 and 75 are for

backscatter with 44 and 00 polarizations for a cake pan of radius two wavelengths

and a height of four wavelengths. Figures 76 and 77 are for backscatter with 00

and 00 polarizations for a cake pan of radius two wavelengths and a height of ten

wavelengths. Figures 78 and 79 are for backscatter with Oq5 and 60 polarizations for

a cake pan of radius five wavelengths and a height of ten wavelengths.

From a simple ray picture it may be shown that the first D... term which is not

in the principal plane and hence not considered in this solution, appears at

0 = tan' [ . (331)

Note that this is a boundary, and the solution may begin to deteriorate even before

it. This corresponds to 0 , 540 for Figures 80 and 81, 0 -• 35* for Figures 72 and

73, 0 -" 190 for Figures 74, 75, 78 and 19, and 0 - 80 for Figure 76 and 77. Taking

this into consideration, it is observed that the results compare well with the modal

theory.
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0 0 20 30 40 50 60
0 (DEG.)

Figure 72: Backscatter field for a circular cylinder with radius 2A~ and height 2A wuithi
4.polarized field (UTD solution valid for 0 < 350).

%L I

0 V 20' 30 40 50 60
0 (DEG.)

Figure 73: Backscatter field for a circular cylinder with radius 2A and height 2A with
98 polarized field (UTD solution valid for 8 < 350).

124



C-4

I

0 5 10 15 20 25 30 35 40 45 50

ANGLE (DEG.)

Figure 74: Backscatter field for a circular cylinder with radius 2A and height 4A with
44' polarized field (UTD solution valid for 0 < 190).

U.,

Wo_ "Copy

0 5 10 15 20 25 30 35 40 45 50
ANGLE (DEG.)

Figure 75: Backscatter field for a circular cylinder with radius 2A and height 4A with
0B polarized field (UTD solution valid for 0 < 190).
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0 5 10 15 20 25 30 35 40 45 50
ANGLE (DEG.)

Figure 76: Backscatter field for a circular cylinder with radius 2A and height IOA
with q~kpolarized field (UTD solution valid for B < 80).

0 5 to 15 20 25 30 35 40 45 50
ANGLE (DEG.)

Figure 77: Baclcscatter field for a circular cylinder with radius 2A and height IOA
with 69 polarized field (UTD solution valid for 8 < 80).
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0 5 10 15 20 25 30 35 40 45 50
ANGLE (DEG.)

Figure 78: Backscatter field for a circular cylinder with radius 5A and height 10A
with 00 polarized field (UTD solution valid for 9 < 190).
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0 5 0 15 20 25 30 35 40 45 50
ANGLE (DEG.)

Figure 79: Backscatter field for a circular cylinder with radius 5A and height IOA
with 09 polarized field (UTD solution valid for 0 < 190).
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0 5 10 15 20 25 30 35 40 45 5
ANGLE (DEG.)

Figure 80: Backscatter field for a circula~r cylinder with radius 4A and height 2A with
q polarized field (UTD solution valid for 0 < 540).

St2

0 5 10 15 20 25 30 35 40 45 50
ANGLE (DEG.)

Figure 81: Backscatter field for a circular cylinder with radius 4A and height 2A with
698 polarized field (UTD solution valid for 0 < 540).
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SECTION 8

Donut

1 Introduction

First and second order Geometrical Optics solution and their caustic corrections for

the donut are obtained in this section. This is a special case of scattering from

elliptical cylinders discussed in detail in [30]. This configuration is of interest since

it can represent tires on a vehicle and with Section 7 a wheel hub. It is observed in

[301 that a fourth order equation has to be solved in order to determine the reflection

points from such a geometry. However, working the other way around, with one of

the reflection points assumed known, a simple solvable equation can be obtained to

get the angle of incidence. Interpolation can then be used to determine the reflection

points for a given angle of incidence. In Section 2, for a general bistatic case, the

points of reflections for the double bounce are determined.

The rest of the section deals with backscatter. First, the GO term for the 2-d

cylinder-cylinder doubly reflected term is obtained in Section 3. This is used later

to get GO field for the donut. The first order GO solution for the donut and its

caustic correction are obtained in Sections 4 and 5, respectively. In Section 6, the

second order GO solution for the donut and its caustic correction is discussed.

129



2 Cylinder-Cylinder Interaction

Consider the two-dimensional geometry shown in the Figure 82. In order to compute

the spread factors, it is necessary to determine the points of reflection. It was found

in Section 3, that for the double bounce to occur, the angle of the dihedral must

be at = E + 2 -2 2 Thus, for a given bistatic angle, two dihedral2e - 1 -" or a =--- 100,. todhda

angles are possible which will result in a double bounce. Of the two double bounces,

one is for the case when the first reflection occurs from cylinder of radius a,, RI R2,

and the other is for the case when the first reflection occurs from cylinder of radius

a 2 , R2R, (RI and R 2 refers to reflections from the cylinders of radius a, and a 2 ,

respectively). However, for the backscatter case, there is only one dihedral angle,

a M 2, and the two ray paths, RR 2 and R2 R,, are the same. We will determine the

z

I 2

a,

Figure 82: Cylinder Cylinder interaction.
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reflection points for one of the rays, R, R2 or R 2R,, and use that residt to determine

the reflection points for the other ray path. First, the ray path that results is the

dihedral angle being greater then M will be considered; i.e., a = E + 10-0'. This

choice is necessary in order to avoid the ambiguity in the relationship between sides

and angles, the sine rule.

From Figure 82, it is observed that if 0 > 0', a is greater then t (i.e., a =

S+ )10-), we will determine the angle /0 for RR 2. However, if 6 < 6', we will

determine the angle 0 for R2RI. From Figure 82, one gets

=/3- + - (332)

2

Using the sine rule on the triangle formed by il, i12 and the y-axis,

dl 4- d2  s_ s2
-d+d2--3 8 (333)

sin(r - a) sin(E - y)) sin (

where s, and 82 are the length made by sides it and n2, respectively. Using Equation

(333) and applying sine rule on the triangle formed by ni, ii 2 and the two points of

reflection,
(d, + d2 )cos-y - a, sina _ sin (0' + )(334)
(d, +-d2)sin/3- a2 sina cos(8+/)(

Rearranging Equation (334) and solving for the incident angle, 0,

6 = tan-' OS-COS( - a - Ob)] (335)

where 06 is the bistatic angle,

Ob -'. (336)

Equation (335) may be used to obtain the incident angle, 0, if the point of first

reflection, or P/, is known. However if 0 is known, which is normally the case, then

P may be found by trial and error. A more reasonable approach may be to find O's

for particular values of /, using Equation (335), and then interpolating to find /3 for

a particular 0. Now, -y may be found from Equation (332).
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Now, conqider the othler case, when a = - referring lo the other douible

bounce, it can be shown that

, 3 - 10,, (337)

and

oocurs rsl(338)

Thus, one double bounce occurs at reflection points defined by angles /3 and Y, and

the other double bounce occurs at the reflection points defined by angles~o h~,IA and

Yolthrr .

3 Two-Dimensional Cylinder-Cylinder Doubly
Reflected Term

Referring to the two-dimensional geometry shown in Figure 83. The backscatter

doubly reflected term R1 R2 , using Equation (1), is given as

(Y(O) R P)tR PtI -._ Jk e, (p ) (339)

R, and R2 are defined in Equation (1) at the first and second reflection points,

respectively, and p'"' and p'I7, the caustic distances for the first and the second

reflected rays, are given as
rr asin(O±+ ) (340)

2

and
1 _ 1 2
-r + .s( + (341)

P I I a 1 cos (0
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Figure 83: Two-dimensional Cylinder-Cylinder showing RR 2 interaction.
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4 Donut: First Order Solution

Consider modifying the 2-D double cylinder to a donut, shown in Figure 84. For the

backscatter case, the two single reflected fields, from Equation (1), are given as

E= , (0) "J p ejR-(÷+r'), (342)

where p' and p" are obtained using Equation (5). The radii of curvatures are R=
d an .6 adi r h

S and R2 = a. Also, using 6' = 0, 01 = and 02 in Equation (5), the

caustic distances become

Pr-a (343)Pi = •

d a
P2= -s n0 + 2 (344)

In Equation (342), F, = i,., for the reflection from the donut on the - y-axis, and

for the reflection from the donut on the + y-axis j, = ý.2. In Equation (344) and in

the radius of curvature, R1 , - and + signs refer to reflection from the donut on the

- and + y-axis, respectively. Note that a first order caustic occurs when 0 --4 0 and

p --+ 00. This caustic correction may be done much the same way as the first order

diffracted caustic is corrected, which is discussed in detail in Section 4.

5 Caustic Correction to the First Order Solution

The concept of using equivalent currents for caustic correction discussed here have

also been used in References [31, 321. The equivalent line currents for a cylinder

are obtained by setting the infinite cylinder's GO reflected field equal to the field

radiated by the infinite line currents. The equivalent line currents for a cylinder are

v-- k fe'°" (345)

and

I= -. (Ii (0). J7) 71) V e e (346)
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Figure 84: Geometry used to get first order caustic corrected fields.
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where

a (347)
' - 2 sin2fl'

a is the radius, and ki, is the normal to the 2-D cylinder as shown in Figure 84. First,

the caustic correction from half of the donut on the + y-axis will be considered. The

iesult from this caustic correction will be used to get the result from the whole

donut. Referring to Figure 84,

F=( +dasin) cos q+ (+asinO)sin*j+acosOl, (348)

fi =cosG 0 + sinO , (349)

f3=sino ic - coso j, (350)

f =sin0j+cos80, (351)

and

÷' = sin 0' i + cos 0' i. (352)

Let

E'=oEoi (353)

and E,, 1. The far-zone fields, due to the equivalent line currents, are

- .. e-jkr
E, =/3pjkksin-• /34j " (•) e~krd4, (354)

and

= x jk sinO' f Im (0) ej•re.+dO. (355)

Equations (354) and (355) may be simplified to

4 -jkr 2ek e.ZaV iejk2a. V2 e 0 sin 2 Oe •(d+2a ins) %" "in6dO' (356)

and

Am e-k 4 LW jkC49s0f 2 Oejk(d+2 o sin, 6) si 0 sinOdO. (37r 27r

136



Combining Equations (356) and (357) and after some manipulation, it may be shown

that the first order reflected field with the caustic correction, is given as

& = k' (0). WR eJ'•+i')T,. (U), (358)

where

I',.(U)= Af -e 4 (359)
U

fo = 7r [Jo (U) + jH, (U)], (360)

and

U = k d ± asinO) ir.(÷ + f'). (361)

In Equation (360), Jt) and Ht, refer to the Bessel and Hankel functions, respectively,

and in Equation (361), the + and the - signs refer to the reflection from donut of

the + and - sides of the y-axis, respectively. The normal at the point of reflection

as defined in Equation (349), is hr. The transition function is T,. (U). The following

are the small and large argument forms which are obtained using the series and the

asymptotic forms, respectively, of the Bessel and Hankel functions, so that for

Jul << 1,

Tr(U)I U 4 1 - - +} +, (362)

and for IUI >> 1,

j17 55 j53 7rU 1r33-W + 128U 2  1024U' -f I [ -1-- (

6 Second Order Solution and its Caustic Correc-
tion

The second order solution to the donut (Figure 85) obtained by modification to the

double bounce on the two-dimensional cylinder-cylinder, discussed in Section 3, is

given as

(fr0) Pr, -Pr, 2e eA~'ek~ 34
RI(). -.W2 (Pr, + s) (p' + s)p' 2 e e e (364)
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Figure 85: Geometry showing the term RIR2 from a donut.
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where R, and R2 are as defined in Equalion (1) at the first and second reflection

points, p' and p"2 are as defined in Equations (340) and (341), and

(a cosl3 - 2
P2 2 sin (0 +/f) cos/3' (365)

and
1 .1 2 cos (8 + 3) sinl3 (366)

- " + (a sin/- )

are obtained using Equation (2).

It is observed that as 9 -f 0, p.' -- oo, Equation (364) appears to become

infinite. This is expected since we are at a double reflection caustic. However a

careful evaluation of Equation (364) at the caustic shows that the double reflected

field vanishes at the caustic. One simple way to see this is to look at two double

reflected terms that are 0 = 900 apart on the donut. It is observed that along the

z-axis, these two terms cancel each other. Thus, the total resultant field from the

double reflected caustic, along the z-axis, vanishes. However, near the caustic, 0 : 0,

it is necessary to set up equivalent currents on half rims that are associated with

the two reflection points and integrating the equivalent currents along half-circles,

the radius of which are determined by the two reflection points (GO), in order to

obtain the doubly reflected field. This interaction could not be written in closed

form because of the complexity of the distance parameter, s, the distance between

the two reflection points. (See Figure 85.) Performing this integration numerically,

it was found that the doubly reflected term hardly made any contribution to the

total result, at least for the dimensions of the donut considered. (See Figures 86 and

87.)

7 Results

Figures 86 and 87 compare the soft and the hard backscatter at 10 GHz from a donut

of solid radius, a in (0.943 A) and the ring radius, in (2.7 A). Since1392 2 i n III"
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the result for the soft pnlnrifation Figilre 86, is better th~n for the hard pnhirlzrtion,

Figure 87, it is expected that the creeping waves, which have not been considered in

this solution, are important for this dimension of the donut. Since the result worsen

as 0 increases, it may be expected that double bounce mechanisms that are not in

the principal plane become more important.
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Figure 86: Backscatter from Donut with 04' polarized field.
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Figure 87: Backscatter from Donut with 00 polarized field.
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SECTION 9

UTD Scattering from
Multi-Joined Cylinders

1 Introduction

The multi-joined cylinder model for the scattering of the electromagnetic fields is

developed for the purpose of studying radar remote sensing of forested areas. The

top-hat, discussed in Section 5, can be used to study the tree trunk and ground

interaction. In this section, the multi-joined cylinders model, see Figure 88, is used

to investigate the scattering from tree trunks and branches. Concentric dielectric

layers are used to represent the material characteristic of the trunks and branches,

and their shape is represented by using more than one cylinder to create bends.

Uniform Theory of Diffraction (UTD) is employed to obtain the scattered fields.

The dihedral study done in Reference [13] and outlined in Section 3 is used as the

building block for modeling the cylinder-cylinder interactions. The main differences

being that the reflection coefficients are modified to take into account the dielec-

tric layers, see Appendix B or Reference [33], and the standard :wo dimensional

UTD diffraction coefficients are modified to take into account the spread factors and

caustic corrections. The caustic corrections are basically the same as discussed in

References [21, 22] and summarized in Section 4. Also, junction characteristics, not
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Figure 88: Multi-joined cylinder model.
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digcn.tsed in the literature, such as radius nf rucrvatiire and edge normal, are required

to obtain the diffracted field from a junction.

2 Theoretical Background

2.1 Modified Diffraction Coefficient

In order to find the scattered fields from dielectric surfaces, the edge diffraction

coefficient for the perfectly-conducting case (Equation (25)) discussed in Section 3,

has to be modified to take into account a junction of two dielectric plates. It is shown

in References [34, 351 that the modified diffraction coefficient for an electrically thin

dielectric is

D,,,d,-(1 T c 2 + -2n-cot (-

+R.,h cot r- (t + V) + R',h cot + (t + •)
2n 2n

(367)

where Rn,' and R,'ý are the reflection coefficient for the vertical and horizontal

polarization for the 'o' and the 'n' faces, respectively, and T,,h and T,"'" are the

transmission coefficient for the vertical and horizontal polarization for the 'o' and

the 'n' faces, respectively. Details of the reflection and transmission coefficient are

presented in Appendix B or Reference [331. To generalize the edge diffraction coef-

ficient to include diffraction due to dielectric plates, the following assumptions are

made [34]

(a) n - 1, or n =2 and

(b) the width of the dielectric plates is a small fraction of a wavelength.

Note that this is not the case for the multi-cylinder model. However, if the

cylinders are assumed to be lossy, the transmission coefficients, T,,h, are negligible.

In general, for the backscatter case, the incident boundary cotangent terms have a

much smaller contribution as compared to the reflection boundary cotangent terms.
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Hence, for the backscatter case the transmissinn coefficient may be assurmed zero.

Therefore, under the assumption of backscatter and lossy cylinders, Equation (367)

can be simplified to

_ -i- [cot ( 1 - -)) cot(r+ (I- ))
D.d- 2ne2 cot + 2n

+RhCot (+i + R.,, cot 7rk ('t+ V) (368)

2.2 The Junction Edge Normal Vector and Curvature

In order to find the diffracted caustic distance, Pd, in Equation (22), from a typical

cylinder-cylinder junction, it is necessary to determine the edge normal vector, 4.,

and the radius of curvature, a,. Here, the right hand x-y-z coordinate system is

defined so that the x-axis is along the normal to the end cap of the main cylinder

(trunk) and the y-axis is in the plane formed by the end cap normals (also the

pattern plane) in the direction of the junction of interest, Figure 89. It is shown in

Appendix C that for a cylinder-cylinder junction angle ct (the dihedral angle) and

equal radii of cylinders, a, the junction edge normal is

i,= Cos + > sin(2):i, (369)

and the radius of curvature is

a,= acos (i.(370)

3 Modification to the Two-Dimensional Dihe-
dral

The only caustic that needs to be considered is that of single diffractions from the

end caps. Thus, its correction is the same as that of the cylindrical part of the top-

hat, which has been discussed in Section 3.1. Note that even if the junction angle,

a, is 900 the diffracted-reflected and the diffracted-reflected-diffracted terms do not

exhibit caustics at broadside.
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Figure 89: Cylinder-cylinder diffracted-reflected terms.

3.1 Spread Factor and Caustic Correction for Diffracted
Terms

Equation (22) is used to get the spread factor for single diffractions. However, if the

single diffraction is from a junction, Ai, and a, used in Equation (22) are defined by

Equations (369) and (370), respectively.

3.2 Spread Factor for Diffracted-Reflected Type Terms

For the backscatter case, the spread factor due to the diffracted-reflected (DR) and

reflected-diffracted (RD) terms are the same since the two ray paths are the same.

For details, see Section 2.
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Tie spread factor for the Pi R- term (or R2 DP), see Figure 89, may he represented

as

Paprcad ficltyor a 1TP2 (371)

where pd, using Equation (22), is

p d a (372)
sin 0 + sin (2a - 0)'

and the principal radii of curvature of the reflected wavefront are

("I = s, (373)

and
1 1 2sin (a - ()pr= +pd-- (374)

or
a (9 + pd)

('2 a+a-d)si a8 (375)a' + (S + pd) 2sin (a - 0)"

Using Equations (372) to (375) in (371),

,..p-,t = fa.l a+ (s p) d2sin-( (376)

The spread factor for the D2R, term (or R, D2), see Figure 89, may be represented

as aS t

r d r
Psprrnd .ri,'or $(pd + 8 ) PI P2]

where pd, using Equation (22), is

pd = __a (378)sin (a + O) + sin (a - 0)'

and the principal radii of curvature of the reflected wavefront are

p;= s, (379)

and

P2= a+(s+pd)2sin0 (380)

Using Equations (378) to (380) in (377)

Pwrad d o", por a + (.9 + pd) 2 sin0 (381)
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3.3 Spread Factor for Diffracted-Reflected-Diffracted Terms

The spread factor for the D2RID 2 term, see Figure 90, may be represented as
I

D 211 1Df2  P P 2 Pd] (382)
d (pd + .) (p, + a) (p, + )2

where p', using Equation (22), is

d (383)
PI cos a+ Isin (a- 0)1'(3)

and the principal radii of curvature of the reflected wavefront are

p= , (384)

and
1 1 2

S+ p + -(385)
P2 a 1 a

and for the second diffraction, p2, using Equation (22), is

1 cosa -- Isin (a - ()8

(P2 + a) +a

The spread factor for the DI R 2D1 term, see Figure 90, may be represented as

r d
p",I , 1 a VI P) 'V Ip 6 , (387)I,,-f ," -,. (P d + ,) (,r + .) (p r +,

where pd, using Equation (22), is

df a
P) cos a + sin 0' (388)

and the principal radii of curvature of the reflected wavefront are

S= a, (389)

and
1 1 2
r + pd a' (390)

and for the second diffraction, pd, using Equation (22), is

1 cos ot + sin (31

P2=(p+a + s a (391)
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Figure 90: Cylinder-cylinder DRD terms.
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4 Model Types and Results

Two types of models are considered, as shown in Figures 91 and 92. The models

are made of PVC pipes with absorber placed inside because it is inexpensive and

easy to piece together into various configurations. They are chosen to validate the

dielectric aspects of the code. The dielectric properties of the PVC and the absorber

are well known. The configurations are chosen to resemble the crooks of trees. It is

not suggested that the results from these models are directly comparable to those

from trees.

To determine the effects of terminations while comparing the Uniform Theory of

Diffraction and the measurement results, the following order of analysis is carried

out. All the results are for the backscatter case. First, the plastic cylinders and the

end caps are covered with aluminum foil: Figures 93 and 94 show the vertically and

horizontally polarized fields for the T-junction at 2 GHz, and Figures 95 and 96 show

the vertically and horizontally polarized fields for the Y-junction at 2 GHz. Second,

the plastic cylinders are covered in aluminum foil, but flat absorbers are inserted

in the end caps: Figures 97 and 98 show the vertically and horizontally polarized

fields for the T-junction at 2 GHz, and Figures 99 and 100 show the vertically and

horizontally polarized fields for the Y-junction at 2GHz. Next, the cylinders are the

same as above, but cone pyramid absorbers are inserted in the end caps: Figures 101

and 102 show the vertically and horizontally polarized fields for the T-junction at

2 GHz, and Figures 103 and 104 show the vertically and horizontally polarized fields

for the Y-junction at 2 GHz.

4.1 Specular from PVC Cylinder with Absorber

Figure 105 shows the real and the imaginary parts of the dielectric constants for the

absorber used to fill the PVC pipe. The dielectric constant of the PVC pipe is taken

to be that of Polystyrene given as E = 2.55 - j8.5E - 04 (36] and is assumed fixed

over 2-18 GHz.
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Figure 91: The T-junction model.
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Figure 92: The Y-junction model.
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Figure 93: Baclcscatter from T-junction covered in aluminum foil at 2 0HZ for
vertically polarized field.
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Figure 94: Baclcscatter from T-junction covered in aluminum foil at 2 0HZ for
horizontally polarized field.
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Figure 95: Backscatter from Y-junction covered in aluminum foil at 2 GHZ for
vertically polarized field.
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Figure 96: Backscatter from Y-junction covered in aluminum foil at 2 0HZ for
horizontally polarized field.
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Figure 97: Backscatter from T-junction covered in aluminum foil, but flat absorbers
inserted in end caps, at 2 0HZ for vertically polarized field.
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Figure 98: Backscatter from T-junction covered in aluminum foil, but flat absorbers
inserted in end caps, at 2 0HZ for horizontally polarized field.
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Figure 99: Backscatter from Y-junction covered in aluminum foil, but flat absorbers
inserted in end caps, at 2 GHZ for vertically polarized field.
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Figure 100: Backscatter from Y-junction covered in aluminum foil, but flat absorbers

inserted in end caps, at 2 0HZ for horizontally polarized field.
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Figure 101: Backscatter from T-junction covered in aluminum foil, but cone pyramid
absorbers inserted in end caps, at 2 GHZ for vertically polarized field.
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Figure 102: Backscatter from T-junction covered in aluminum foil, but cone pyramid
absorbers inserted in end caps, at 2 0HZ for horizontally polarized field.
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Figure 103: Backscatter from Y-junction covered in aluminum foil, but cone pyramid
absorbers inserted in end caps, at 2 0HZ for vertically polarized field.
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Figure 104: Backscatter from Y-junction covered in aluminum foil, but cone pyramid
absorbers inserted in end caps, at 2 GHZ for horizontally polarized field.
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In order to match the theory with the measurements in the specular region broad-

side to the PVC pipe with absorber flat at the end caps it is necessary to set an air

gap between the PVC and absorber in both the UTD and the eigenfunction solution.

This may be explained by the fact that the absorber is not tightly fitted into the

PVC pipe. Figures 106 and 107 show the horizontal and the vertical polarizations

from a 24 in long cylindrical pipe of radius 1.5 in. An air gap of 0.18 in is chosen

for the theory to match the measured results. It is observed that the PVC pipe

was slightly elliptical which can explain why the ripple in the eigenfunction solu-

tion due to the creeping wave does not match with the creeping wave ripple in the

measurement.

4.2 Results of PVC pipe with absorber

In the modified diffraction coefficient, Equation (368), one face of the wedge is

unaware of the characteristics of the other face. This suggests that simplifying

Equation (368) to retain information of only one face at a particular direction should

provide even better results. The diffraction coefficient is simplified as

if R'cot oR-•")> cot (•+('P"•)'
n 2(n ( )±

D..h - eJ R 'h cot r -( + ,V )

Inf-r-k ht 2n

if IR,.h cot < +R) ' Cot ( 7:1')

D., -e R'cot 7r + (2n +4') (392)

2nV/- n 2( n (

It is found that patterns and signatures of cylinders, T and Y junctions, ob-

tained by using the simplified diffraction coefficient, Equation (392), compare better

with measurements than those obtained by using the modified diffraction coefficient,

Equation (368). For all the results shown in this subsection, the simplified diffraction

coefficient of Equation (392) is used and an air gap of 0.18 in is assumed between

the PVC pipe and the absorber. Also, all the results are for the backscatter case at

159



.-o

M

.• i ... .....! . .......i .. .. ..... . . .. ... . .. . . ...... .. .. ....

B I

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
FREQUENCY IN GHZ

Figure 106: Specular from 24 in long cylinder of radius 1.5 in for horizontally
polarized field.
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Figure 107: Specular from 24 in long cylinder of radius 1.5 in for vertically polarized
field.
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2 (CTIz. For a 2.1 in long cylindriral pipe of radius 1.5 in, Figiires 1OR and I0q show

the vertical and the horizontal polarizations, respectively. Figures 110 and 111 show

the vertical and the horizontal polarizations, respectively, for a cylindrical pipe of

the same length but of radius 2 in. For the T-junction model, shown in Figure 91,

Figures 112 and 113 show the vertical and the horizontal polarizations, respectively.

Figures 114 and 115 show the vertical and the horizontal polarizations, respectively,

for the Y-junction model, shown in Figure 92.

5 More Realistic Modeling

The PVC models studied above have been chosen simply to validate the theory and

the computer code. More work needs to be done to come up with a reasonable model

for a tree. Certain conclusions from this study, however, may be pointed out. Since

the PVC pipe is not lossy, it is expected that better results can be obtained for

actual trunks and branches. This is because the surface waves will dampen out due

the wood being lossy. Also, in general, it is expected, that the truncations of the

cylinders which are considered in this study only approximately model the actual

shapes of the trunks and branches. One needs to come up with an equivalent length

in order to model a trunk or a branch.
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Figure 108: Backscatter from 24 in cylinder of radius 1.5 in at 2 GHZ for vertically

polarized field.
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Figure 109: Backscatter from 24 in cylinder of radius 1.5 in at 2 GHZ for horizontally

polarized field.
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Figure 110: Ba~ckscatter from 24 in cylinder of radius 2.0 in at 2 GHZ for vertically
polarized field.
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Figure 1ll: Backscatter from 24 in cylinder of radius 2.0 in at 2 0HZ for horizontally
polarized ield.
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Figure 112: Backscatter from T-junction at 2 0HZ for vertically polarized field.
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Figure 113: Baclcscatter from T-junction at 2 0HZ for horizontally polarized field.
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Figure 114: Backscatter from Y-junction at 2 GHZ for vertically polarized field.
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Figure 115: Baclcscatter from Y-junction at 2 0HZ for horizontally polarized field.
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SECTION 10

Conclusion

In general, the high frequency EM scattering from complicated physical structures

such as aircraft, tanks, trucks etc. can be analyzed using ray techniques by building

up such complex structures from simpler shapes such as cylinders, cones, dihedrals

etc.. Therefore a complex problem may be analysed piece by piece and then applying

superposition. In this work, classical Uniform Theory of Diffraction (UTD) with

modifications for the caustics and curvatures is used to get the Scattered fields.

Shapes where the second and higher order interactions are important over a wide

range of angle are considered.

It is shown that for the rectangular dihedral in the principal plane, the order of

interactions required to get the pattern in the dihedral region, for a dihedral of angle

a, is found to be the integral value of - for the backscatter case. Since the

computer code developed for this analysis contains all interactions up to third order

except the triple diffractions, the solution discussed here is valid for backscatter for

dihedrals of a = 600 or greater. This solution is expected to degrade gracefully

in the dihedral region for a less than 60'. In general, as the angle of the dihedral

diverts from a which makes an integer, the main beam amplitude falls fairly

rapidly. The UTD formulation provides excellent results compared with the method

of moments. For the case of maximum scattering, from a GO point of view, and

for a general angled dihedral and bistatic angle, the dominant UTD terms in the
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dihedral region are reduced to simple forms. Comparisons of these dominant UT!D

results with the total UTD solutions show good agreement.

The two-dimensional result of the rectangular dihedral is modified by caustic

corrections and spread factors, to get three-dimensional results for the top-hat, bi-

cone, and parallel plate and circular cavities. It is found that the response of cavities

is not as sharp as compared to that of the 900 dihedral. The results compare well

with the those obtained from body of revolution moment method solution.

Scattering from the donut is considered in Section 8. The first and second order

GO field caustics are corrected by using equivalent currents. Again, the results

compare well with the body of revolution moment method solution.

Scattering from cylindrical pipes that form a T and Y-junctions of perfect electric

conductor and dielectric materials are considered. It is shown that by using the

modified diffraction coefficients, the UTD results compare well with measurements

and an eigenfunction solution. Some more work is required to extend these results

for scattering from tree trunks and branches.

It is observed that a few underlying principles are all that is required to get

scattered fields from many different shapes. It is expected that even better agree-

ment and/or results for small-sized models could be achieved by including more

interactions.
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Appendix A

Balancing of Fields for Joined
Wedges

In this appendix, a detailed mathematical analysis is carried out in order to obtain

various diffracted terms which are then used in Section 4 to show continuity of the

fields. Reference is made to Figure 27. For diffraction from Qi the angles are

•b'= ?r+e and 4,=c2 . (393)

Thus diffraction from Q! is given as

Deh PI 2n(Q )+ cot '2r1 2n c ot j2
2nv/2ýi E2 - E \2n 1

F {cot (2v E2) + 2n -- ] e1&d (394)

Since the diffracted field is taken close to the incident shadow boundary, P,,,.(Q1 )

may be split into a term, P<,m(Q,), which is singular at the shadow boundary, and

non - singular term that is denoted by P ,,.(Q 1 ).

- ... (/+ 1 1 ]e-jk (395)P"""(E2 - E l E,2c + El

Noting that P,..,,,(QI) is present only when C2 > 0

e- '"lr [ 1 E
I - I e-"jd1 [ - sgn(c2 )J (396)
7 2 I I- 'd
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and

P;""(Q2) -2,/-2k [cot 2 nt + - E2

T cot (27 + c, + E2) e-ikd~ (1 4- gn(e2 )j. (397)

The angle parameters for Q2 are

; -Ej and W - C2 (398)

and the diffraction from Q2 is

-e r/ (2w -E 2 + e, 2n
D2. -- P,..,,(Q2) =1 2n ' cot 2r 2n + - 4+ e2

T {cot (2 " F2 - l )+ 2  } e'jkd (399)

Again separating P,,,(Q2) in to singular and the non-singular parts and noting that

P,... (Q2) is only present when E, < 0.

(Q2) - e- L/ 1 1  e-kl (1 - sgn(e,)] (400)

e2#/l r -El -_+f •) 2

S(2. 

- 2 -- [

Tco (2 2~ 2') e ~] - sgn(E,) (402)
cot 21c-2ot

The angle parameter for Q3 are

4' = 7/2 + f, and 0 = 37/2 + e, (403)

For the single diffracted field from Q:1. Note ONLY the term that is singular for

diffraction form Q:i is shown below. This term is associated with 7 - ( ' - ).

-" (Q3 e-3r kh(,,-()C ,:Ad (404)
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From Figure 27 and Equation (394), we note that for the diffrartion from edge Q1,

the term associated with 7 - (0 - 0') blows up. From double diffraction formulation,

S- (4,- 4/) is obtained by setting p = 1 in Equation (42). Again from Figure 27 and

Equation (399), it is noted that for diffraction from edge Q2 the term associated with

7r + (4, - 4') blows up. Note that in the double diffraction formulation, the angles

4 and 4' on the second edge (Q 2) are defined in the reverse to those defined for

single diffraction. With this in mind, for double diffraction, w - (4, - 4') is obtained

by setting q = 1 in Equation (43). Thus, we expect the double diffraction term

obtained by setting p = 1 and q = 1 in Equation (44) to compensate for the

discontinuity and singularities of the single diffracted fields.

For the double diffraction formulation

,(n, - 1)7r" - c (405)

and

2= (n2 - 1)7r + C2. (406)

Thus

,= r - [nlr - (n, - 1)7r + El] = -E, (407)

(1,, = r-- [n27r - (n2 - 1)W - C2] = C2 (408)

a,,=, 2co 21[-f,/2- 7r/21 = 2sin 2 (e,/2) (409)

a =, I 2cos 2 I2/2 - r/2] =2sin2 (E 2 /2) (410)

Using the above equations in Equation (46)

ph(@p=I, tq=I) = - I (-2n,) (2n2)

2 sin 2 (E2/2)Flkd2sin 2 (E1 /2)] - 2 sin (f, /2)Ftkd2 sin 2(f 2 /2)]

2 sin 2 (E,/2) - 2sin 2(E2 /2)

kv'•). (411)

For small x

F[x -- - 2ae"I/') elr'I+Y) (412)
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F[2kdsin2 (/,2)]I [ 27rkd(ce1 /2) 2 
- 4kd(EI/2)2ej1"' I eif/kdI) ('113)

-[Vrirkd/2 I-EI kdE.4eiwr/' e j(w1/+2kdt2,I (414)

1 E2 /4 [F ~kd/2IgiI I kd E2 ef/'I ei(7r/I+2kd,/*f)

ph (4tpIq=~ 1 j>9 7rCIE 2  C2/4 - E2/4

CI/4 [ r7rkcd121E21 -~ kd 2e.2 ' ej/Ij(7wP+2kdt2/4)

1/4 2/( 
e jk rd) (415)

neglecting terms of order c, and C2

Ph( 4o Iý9 I e-37'/ E2 snE 2 2sg(j)] e-jkd (416)

-e- "'1' [c,sgn(E2) - C2sgn(eI)] - (417
- [' -7 kJ

From Equation (45)

87rn 2n E /4 2 E2/4n )

FjkdE2/2I - F~kdc22/21 (eikd (418)

Using Equation (414)

2 kd&le/) Ij(w1/I+kdr'/2)

PA~p,4~I i{21rkdjk Ef/2 - 2/2

(Viricd/2lE2 1 - kdf~ei~/4) j(w/4+kdc,22) j ekd(49

CI/2 2/2k kfd)

neglecting terms of order E, and C2

P. -$e-' { 2sgn(E2) } ig(I ejk-d

e-jkd(420)

175



Appendix B

Reflection and Transmission of
Plane Waves in Planar, Stratified
(Multi-Layered) Medium

Details of reflection and transmission of the plane wave in multi-layered medium are

presented in 133]. Here a summary of [33] is presented. Suppose a plane wave in

free space has oblique incidence on a plane multilayer consisting of N homogeneous

isotropic slabs as shown in Figure 116. Let d,,j,p, and f represent the thickness,

permeability, and permittivity of slab n. The slabs are considered to have infinite

width and hight and parallel surfaces, with unbounded free space on both sides of

the multilayer. The incident plane wave impiiging on the left-hand surface of the

multilayer is given, in the TE case (i.e. perpendicular polarization) by

E'. = EgejknsinO Oeik°ot ,•, (421)

where 0 is the angle of incidence, k(, = 2ir/A, and A is the free space wavelength.

The reflected wave is given by

E`= REt eIA,,uehOe-A, ,.e- ,, (422)

where R is the reflection coefficient of the multilayer. The transmitted plane wave

on the right-hand side of the multilayer is represented by

El. = Eiie kv "S"Jk (... o (423)
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Figure 116: A plane multilayer, illustrating the outgoing and the reflected waves in
each layer.

where T is the transmission coefficient of the multilayer. The field in each layer can

be regarded as an infinite series of the plane waves bouncing back and forth, but it

is more convenient (and equally valid) to consider it to be the sum of only two plane

waves, one travelling outward and one reflected. In layer n, for example, the field is

represented by

El = (A,,e•"" + B,,e-"') e3k''Y '1° (424)

Similarly, in layer n+1 the electric field intensity is given by

E,,+, = (A,,+,e""+I + B,,+ie-"'-+'z) e'k'vYin°. (425)

The boundary between layers n and n + 1 is located at

z,, = df + d 2 + d:, + + + d,,. (426)

By enforcing the boundary conditions on E, and H1, at z = z,1 it can show that[All,~ P, i Q,] [A?,] (4217)
B+, R,, SJ B,,j
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where
. 1 (1 ],+lA"+ n (,_"nt (428)

P2 =011+-

Q.= I(I -An + 17"/, e- (l,,+.,4l )zn (429)
Pn=- 1/

2 (1 "Y + I

(1 1- A+ I^n e(-n+Yn+.)z, (430)

and

Sn= 1 + e,+ (431)
-2 ( 'n 7n+1 )

The propagation constant -y,, for layer n will be complex if the medium is dissi-

pative. Both the real and the imaginary parts of y,, will be positive. If layer n is

a lossless medium, -1,, will be purely imaginary. The wave equation is employed to

obtain

, = /IE,,• -- k.3sin2 0. (432)

The reflection and transmission coefficient of the multilayer can be calculated in

a systematic manner by setting

A,) = 1 (433)

and

B, = 0 (434)

and then by using the recursion equations Equation (427) to calculate A,, B 1, A 2 ,

B 2 , ... AN+,, and BA'+) in that order.

From Eqs. (421) through (424),

E = AN+1, (435)

BN+ I
R AN+' (436)

and
1

R= A (437)
A8N +
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In the TE case the constants A,, and B,, represent the electric field intensities of the

outgoing and reflected wave in each layer. In the TM case (parallel polarization)

the solution proceeds in the same manner. The equations given above apply in both

cases but the A,, and B,, represent the magnetic field intensities in the TM case and

p,,,+ and u,, must be replaced with E,,+, and c, in Eqs. (428) through (431).

If a perfectly conducting sheet is placed on the right-hand surface of the multi-

layer (i.e., on the x-y plane), the solution is again given by the equations above with

the exception that the transmission coefficient T is not calculated in this case, and

Eqs. (433) and (434) are replaced with

A, = 1 and B, = -1 in the TE case (438)

and

A, = 1 and B, = 1 in the TM case. (439)

Equations (438) and (439) are obtained by forcing the tangential electric field inten-

sity to vanish at the perfectly conducting plane.

In the above equations, the reflection coefficient R is defined as the ratio of the

reflected wave amplitude to the incident wave amplitude at *he coordinate origin;

that is,
_ (0,0,0)

R E ,0" for the TE case, (440)
E' (0, 0,0)

and

R Hý- (0,0,0). for the TM case. (441)
H.'(0, 0, 0)'

179



Appendix C

Cylinder-Cylinder Junction Edge
Normal and Curvature

Consider a "natural" cylinder-cylinder junction shown in Figure 117. The cylinders

have radii a, and a2 and make an angle a• at the junction of interest. The position

vector of cylinder 1 in cylindrical coordinates is

F= a, (cos oi 1 + sinq Oi) + z1 i; (442)

and of cylinder 2

'2 a 2 (cos 0 2 i 2 + sin 02i2) + z 2 i 2 , (443)

where 4'1 is measured from x,-axis and 02 is measured from the X 2-axis in the xI - yl

and X2 - Y2 planes, respectively. The two right handed coordinate systems (Za, y,, zi

and x 2 ,y 2 ,z 2 ) are related so that

:2 = - cos a I - sin ai, (444)

i = sin mi - cos ail (445)

and

Y2 = Y,- (446)

Using Equations (444)-(446) in Equation (443)

i = (z2 sin a - a2 cos 02 cos a)i:, + a. sin,,€ 1 - (a 2 cos4 2 sin - + z2 cosa ) i., (447)
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Figure 117: Cylinder-cylinder junction.

and at the junction

Ti'I = i 2. (448)

Now, the junction may be defined by:

a, cos 0, = z2 sin a - a2 COS 02 COS a, (449)

a Isin•01 = a2 sin 0;2  (450)

and

az, -(a 2 cos 02 sin a + z 2 cosSc). (451)

From Equations (449) and (450) one gets

o = Z2 sin 2 a - z2a 2 COS 02 sin (2a) + a2 (cos2 CcOS2 a+ sin2 02) -a'. (452)

Solving the above Equation for Z2,

z2 = a2 cos 02 cot Cr - -c/ -- a. sin '•2. (453)
S1I a Al
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If the radii of the cylinders are the same, a, = a2 = a, then Equation (453) may be

simplified to
a - 02 [cosa - 1] (454)

and
a cos #2 [o• ]245

f'2 = a (cos 0 2 i 2 + sin 02#2) + [ COS 02- [ -a (455)

The first and the second derivatives,

diý2 = ~a sin 02 (O
-2' a(-sin 0 2 , 2 + cos 20 2 ) - . (cos- - 1)i2 (456)

and
d d2  (# +i# ) a cos #2

F,1 d02 a(COS 2i2 + SinlM2)- ao - (cos - 1)i2, (457)d$2 sin c•

are needed in order to determine the curvature and the edge normal vector.

At the point of diffraction, the junction radius of curvature is

= I21 (458)
pl•=,, jI• ' •" - a cos ( ,

and the edge normal vector, n,,, is

S(sin (-)
n- I" I = cos i2 - sin i2 (459)

or

,h, =cos.() + sin (- ~ (460)
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